Statistical length scale in Weibull strength theory and its interaction with other scaling lengths in quasibrittle failure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F09%3APU78999" target="_blank" >RIV/00216305:26110/09:PU78999 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical length scale in Weibull strength theory and its interaction with other scaling lengths in quasibrittle failure
Popis výsledku v původním jazyce
The main result of the paper is the introduction of a statistical length scale into the Weibull theory. The classical Weibull strength theory is self-similar; a feature that can be illustrated by the fact that the strength dependence on structural size is a power law (a straight line in double logarithmic plot). Therefore, the theory predicts unlimited strength for extremely small structures. In the paper, we show that such behavior is a direct implication of the assumption that that the structural elements have independent random strengths. We show that by introduction of statistical dependence in a form of spatial autocorrelation, the size dependent strength becomes bounded at the small size extreme. The local random strength is phenomenologically modeled as a random field with a certain autocorrelation function. In such model, the autocorrelation length plays a role of a statistical length scale. The theoretical part is followed by applications in fiber bundle models, chains of fibe
Název v anglickém jazyce
Statistical length scale in Weibull strength theory and its interaction with other scaling lengths in quasibrittle failure
Popis výsledku anglicky
The main result of the paper is the introduction of a statistical length scale into the Weibull theory. The classical Weibull strength theory is self-similar; a feature that can be illustrated by the fact that the strength dependence on structural size is a power law (a straight line in double logarithmic plot). Therefore, the theory predicts unlimited strength for extremely small structures. In the paper, we show that such behavior is a direct implication of the assumption that that the structural elements have independent random strengths. We show that by introduction of statistical dependence in a form of spatial autocorrelation, the size dependent strength becomes bounded at the small size extreme. The local random strength is phenomenologically modeled as a random field with a certain autocorrelation function. In such model, the autocorrelation length plays a role of a statistical length scale. The theoretical part is followed by applications in fiber bundle models, chains of fibe
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA103%2F07%2F0760" target="_blank" >GA103/07/0760: Soft computing ve stavební mechanice</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Scaling in Solid Mechanics
ISBN
978-1-4020-9032-5
Počet stran výsledku
13
Strana od-do
—
Počet stran knihy
561
Název nakladatele
Neuveden
Místo vydání
Neuveden
Kód UT WoS kapitoly
—