Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural network based damage detection of dynamically loaded structures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F09%3APU85960" target="_blank" >RIV/00216305:26110/09:PU85960 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural network based damage detection of dynamically loaded structures

  • Popis výsledku v původním jazyce

    The aim of the paper is to describe a methodology of damage detection which is based on artificial neural networks in combination with stochastic analysis. The damage is defined as a stiffness reduction (bending or torsion) in certain part of a structure. The key stone of the method is feed-forward multilayer network. It is impossible to obtain appropriate training set for real structure in usage, therefore stochastic analysis using numerical model is carried out to get training set virtually. Due to possible time demanding nonlinear calculations the effective simulation Latin Hypercube Sampling is used here. The important part of identification process is proper selection of input information. In case of dynamically loaded structures their modal properties seem to be proper input information as those are not dependent on actual loading (traffic, wind, temperature). The methodology verification was carried out using laboratory beam.

  • Název v anglickém jazyce

    Neural network based damage detection of dynamically loaded structures

  • Popis výsledku anglicky

    The aim of the paper is to describe a methodology of damage detection which is based on artificial neural networks in combination with stochastic analysis. The damage is defined as a stiffness reduction (bending or torsion) in certain part of a structure. The key stone of the method is feed-forward multilayer network. It is impossible to obtain appropriate training set for real structure in usage, therefore stochastic analysis using numerical model is carried out to get training set virtually. Due to possible time demanding nonlinear calculations the effective simulation Latin Hypercube Sampling is used here. The important part of identification process is proper selection of input information. In case of dynamically loaded structures their modal properties seem to be proper input information as those are not dependent on actual loading (traffic, wind, temperature). The methodology verification was carried out using laboratory beam.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JM - Inženýrské stavitelství

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    11th International Conference on Engineering Applications of Neural Networks (EANN 2009)

  • ISBN

    978-3-642-03968-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Neuveden

  • Místo vydání

    London, UK

  • Místo konání akce

    London

  • Datum konání akce

    27. 8. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku