Asymptotic convergence of the solutions of a discrete system with delays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F12%3APU101101" target="_blank" >RIV/00216305:26110/12:PU101101 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic convergence of the solutions of a discrete system with delays
Popis výsledku v původním jazyce
A system of $s$ discrete equations begin{equation*} Delta y (n)=beta(n)[y(n-j)-y(n-k)] end{equation*} is considered where $k$ and $j$ are integers, $k>jgeq0$, $beta(n)$ is a real $stimes s$ square matrix defined for $nge n_{0}-k$, $n_{0}in mathbb{Z}$ with non-negative elements $beta _{ij}(n)$, $i,j=1,dots,s$ such that $sum_{j=1}^{s}beta _{ij}(n)>0$, $y=(y_1, y_2,dots,y_s)^Tcolon {n_{0}-k,n_{0}-k+1,dots}to mathbb{R}^{s}$ and $Delta y(n)=y(n+1)-y(n)$ for $nge n_{0}$. A method of auxiliary inequalities is used to prove that every solution of the given system is asymptotically convergent under some conditions, i.e., for every solution $y(n)$ defined for all sufficiently large $n$, there exists a finite limit $lim_{ntoinfty}y(n)$. Moreover, it is proved that the asymptotic convergence of all solutions is equivalent to the existence of one asymptotically convergent solution with increasing coordinates. Some discussion related to the so-called critical case known for
Název v anglickém jazyce
Asymptotic convergence of the solutions of a discrete system with delays
Popis výsledku anglicky
A system of $s$ discrete equations begin{equation*} Delta y (n)=beta(n)[y(n-j)-y(n-k)] end{equation*} is considered where $k$ and $j$ are integers, $k>jgeq0$, $beta(n)$ is a real $stimes s$ square matrix defined for $nge n_{0}-k$, $n_{0}in mathbb{Z}$ with non-negative elements $beta _{ij}(n)$, $i,j=1,dots,s$ such that $sum_{j=1}^{s}beta _{ij}(n)>0$, $y=(y_1, y_2,dots,y_s)^Tcolon {n_{0}-k,n_{0}-k+1,dots}to mathbb{R}^{s}$ and $Delta y(n)=y(n+1)-y(n)$ for $nge n_{0}$. A method of auxiliary inequalities is used to prove that every solution of the given system is asymptotically convergent under some conditions, i.e., for every solution $y(n)$ defined for all sufficiently large $n$, there exists a finite limit $lim_{ntoinfty}y(n)$. Moreover, it is proved that the asymptotic convergence of all solutions is equivalent to the existence of one asymptotically convergent solution with increasing coordinates. Some discussion related to the so-called critical case known for
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Svazek periodika
2012
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
4036-4044
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—