General explicit solution of planar weakly delayed linear discrete systems and pasting its solutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU109114" target="_blank" >RIV/00216305:26110/14:PU109114 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.hindawi.com/journals/aaa/2014/627295/" target="_blank" >http://www.hindawi.com/journals/aaa/2014/627295/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2014/627295" target="_blank" >10.1155/2014/627295</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
General explicit solution of planar weakly delayed linear discrete systems and pasting its solutions
Popis výsledku v původním jazyce
Planar linear discrete systems with constant coefficients and delays are considered. It is assumed that the considered system is weakly delayed. The characteristic equations of such systems are identical with those for the same systems but without delayed terms. In this case, after several steps, the space of solutions with a given starting dimension is pasted into a space with a dimension less than the starting one. In a sense, this situation is analogous to one known in the theory of linear differential systems with constant coefficients and special delays when the initially infinite dimensional space of solutions on the initial interval turns (after several steps) into a finite dimensional set of solutions. For every possible case, explicit general solutions are constructed and, finally, results on the dimensionality of the space of solutions are obtained.
Název v anglickém jazyce
General explicit solution of planar weakly delayed linear discrete systems and pasting its solutions
Popis výsledku anglicky
Planar linear discrete systems with constant coefficients and delays are considered. It is assumed that the considered system is weakly delayed. The characteristic equations of such systems are identical with those for the same systems but without delayed terms. In this case, after several steps, the space of solutions with a given starting dimension is pasted into a space with a dimension less than the starting one. In a sense, this situation is analogous to one known in the theory of linear differential systems with constant coefficients and special delays when the initially infinite dimensional space of solutions on the initial interval turns (after several steps) into a finite dimensional set of solutions. For every possible case, explicit general solutions are constructed and, finally, results on the dimensionality of the space of solutions are obtained.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Diferenční rovnice a dynamické rovnice na ,,time scales'' III</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Abstract and Applied Analysis
ISSN
1085-3375
e-ISSN
1687-0409
Svazek periodika
2013
Číslo periodika v rámci svazku
2013
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
1-37
Kód UT WoS článku
000335783700001
EID výsledku v databázi Scopus
2-s2.0-84901008614