Explicit general solution of planar linear discrete systems with constant coefficients and weak delays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F13%3APU102874" target="_blank" >RIV/00216305:26110/13:PU102874 - isvavai.cz</a>
Výsledek na webu
<a href="https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-50" target="_blank" >https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-1847-2013-50" target="_blank" >10.1186/1687-1847-2013-50</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explicit general solution of planar linear discrete systems with constant coefficients and weak delays
Popis výsledku v původním jazyce
In this paper, planar linear discrete systems with constant coefficients and two delays $$ x(k+1)=Ax(k)+Bx(k-m)+Cx(k-n) $$ are considered where $kinbZ_0^{infty}:={0,1,dots,infty}$, $xcolon bZ_0^{infty}tomathbb{R}^2$, $m>n>0$ are fixed integers and $A=(a_{ij})$, $B=(b_{ij})$ and $C=(c_{ij})$ are constant $2times 2$ matrices. It is assumed that the system considered system is one with weak delays. The characteristic equations of such systems are identical with those for the same systems but without delayed terms. In this case, after several steps, the space of solutions with a given starting dimension $2(m+1)$ is pasted into a space with a dimension less than the starting one. In a sense, this situation is analogous to one known in the theory of linear differential systems with constant coefficients and weak delays when the initially infinite dimensional space of solutions on the initial interval turns (after several steps) into a finite dimensional set of solutions. For every possible case, explicit general solutions are constructed and, finally, results on the dimensionality of the space of solutions are obtained.
Název v anglickém jazyce
Explicit general solution of planar linear discrete systems with constant coefficients and weak delays
Popis výsledku anglicky
In this paper, planar linear discrete systems with constant coefficients and two delays $$ x(k+1)=Ax(k)+Bx(k-m)+Cx(k-n) $$ are considered where $kinbZ_0^{infty}:={0,1,dots,infty}$, $xcolon bZ_0^{infty}tomathbb{R}^2$, $m>n>0$ are fixed integers and $A=(a_{ij})$, $B=(b_{ij})$ and $C=(c_{ij})$ are constant $2times 2$ matrices. It is assumed that the system considered system is one with weak delays. The characteristic equations of such systems are identical with those for the same systems but without delayed terms. In this case, after several steps, the space of solutions with a given starting dimension $2(m+1)$ is pasted into a space with a dimension less than the starting one. In a sense, this situation is analogous to one known in the theory of linear differential systems with constant coefficients and weak delays when the initially infinite dimensional space of solutions on the initial interval turns (after several steps) into a finite dimensional set of solutions. For every possible case, explicit general solutions are constructed and, finally, results on the dimensionality of the space of solutions are obtained.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/ED2.1.00%2F03.0097" target="_blank" >ED2.1.00/03.0097: AdMaS - Pokročilé stavební materiály, konstrukce a technologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Difference Equations
ISSN
1687-1839
e-ISSN
1687-1847
Svazek periodika
2013
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
1-29
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—