Weakly Delayed Systems of Linear Discrete Equations in $mathbb{R}^3$
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU138560" target="_blank" >RIV/00216305:26110/18:PU138560 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.vutbr.cz/studenti/zav-prace?zp_id=112186" target="_blank" >https://www.vutbr.cz/studenti/zav-prace?zp_id=112186</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weakly Delayed Systems of Linear Discrete Equations in $mathbb{R}^3$
Popis výsledku v původním jazyce
The present thesis deals with the construction of a general solution of weakly delayed systems of linear discrete equations in ${mathbb R}^3$ of the form begin{equation*} x(k+1)=Ax(k)+Bx(k-m) end{equation*} where $m>0$ is a positive integer, $xcolon bZ_{-m}^{infty}tobR^3$, $bZ_{-m}^{infty} := {-m, -m+1, dots, infty}$, $kinbZ_0^{infty}$, $A=(a_{ij})$ and $B=(b_{ij})$ are constant $3times 3$ matrices. The characteristic equations of weakly delayed systems are identical with those of the same systems but without delayed terms. The criteria ensuring that a system is weakly delayed are developed and then specified for every possible case of the Jordan form of matrix $A$. The system is solved by transforming it into a higher-dimensional system but without delays begin{equation*} y(k+1)=mathcal{A}y(k), end{equation*} where ${mathrm{dim}} y = 3(m+1)$. Using methods of linear algebra, it is possible to find the Jordan forms of $mathcal{A}$ depending on the eigenvalues of matrices $A$ an
Název v anglickém jazyce
Weakly Delayed Systems of Linear Discrete Equations in $mathbb{R}^3$
Popis výsledku anglicky
The present thesis deals with the construction of a general solution of weakly delayed systems of linear discrete equations in ${mathbb R}^3$ of the form begin{equation*} x(k+1)=Ax(k)+Bx(k-m) end{equation*} where $m>0$ is a positive integer, $xcolon bZ_{-m}^{infty}tobR^3$, $bZ_{-m}^{infty} := {-m, -m+1, dots, infty}$, $kinbZ_0^{infty}$, $A=(a_{ij})$ and $B=(b_{ij})$ are constant $3times 3$ matrices. The characteristic equations of weakly delayed systems are identical with those of the same systems but without delayed terms. The criteria ensuring that a system is weakly delayed are developed and then specified for every possible case of the Jordan form of matrix $A$. The system is solved by transforming it into a higher-dimensional system but without delays begin{equation*} y(k+1)=mathcal{A}y(k), end{equation*} where ${mathrm{dim}} y = 3(m+1)$. Using methods of linear algebra, it is possible to find the Jordan forms of $mathcal{A}$ depending on the eigenvalues of matrices $A$ an
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů