Building envelope analysis in terms of thermal stability in summer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU111120" target="_blank" >RIV/00216305:26110/14:PU111120 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Building envelope analysis in terms of thermal stability in summer
Popis výsledku v původním jazyce
Energy building design concept consists in controlling the thermo physical characteristics of the building envelope such as thermal transmittance (U-value) to name one example. However, besides the U-value, the envelope thermal inertia should also be considered because it helps to create indoor thermal comfort. Therefore, in situ measuring and dynamic thermal simulation was made. Simulated calculation results were validated by measuring. In the same model were created cases. These cases varied buildingenvelope constructions, which had different materials and thickness, but they had the same U-value. The aim of this work was to compare simulated cases and to understand, how it works. It was found that the variation of outside temperature have no significant influence. Different performance of the building envelope constructions was seen only when heat gains were considered.
Název v anglickém jazyce
Building envelope analysis in terms of thermal stability in summer
Popis výsledku anglicky
Energy building design concept consists in controlling the thermo physical characteristics of the building envelope such as thermal transmittance (U-value) to name one example. However, besides the U-value, the envelope thermal inertia should also be considered because it helps to create indoor thermal comfort. Therefore, in situ measuring and dynamic thermal simulation was made. Simulated calculation results were validated by measuring. In the same model were created cases. These cases varied buildingenvelope constructions, which had different materials and thickness, but they had the same U-value. The aim of this work was to compare simulated cases and to understand, how it works. It was found that the variation of outside temperature have no significant influence. Different performance of the building envelope constructions was seen only when heat gains were considered.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JN - Stavebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/MEB0810023" target="_blank" >MEB0810023: Modelování denního osvětlení pro energeticky úsporné budovy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů