Hierarchical refinement of Latin Hypercube Samples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F14%3APU112316" target="_blank" >RIV/00216305:26110/14:PU112316 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26110/15:PU115750
Výsledek na webu
<a href="http://dx.doi.org/10.1111/mice.12088" target="_blank" >http://dx.doi.org/10.1111/mice.12088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/mice.12088" target="_blank" >10.1111/mice.12088</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hierarchical refinement of Latin Hypercube Samples
Popis výsledku v původním jazyce
The objective In this article, a novel method for the extension of sample size in Latin Hypercube Sampling (LHS) is suggested. The method can be applied when an initial LH design is employed for the analysis of functions g of a random vector. The article explains how the statistical, sensitivity and reliability analyses of g can be divided into a hierarchical sequence of simulations with subsets of samples of a random vector in such a way that (i) the favorable properties of LHS are retained (the low number of simulations needed for statistically significant estimations of statistical parameters of function g with low estimation variability); (ii) the simulation process can be halted, for example, when the estimations reach a certain prescribed statistical significance. An important aspect of the method is that it efficiently simulates subsets of samples of random vectors while focusing on their correlation structure or any other objective function such as some measure of dependence, spatial distribution uniformity, discrepancy, etc. This is achieved by employing a robust algorithm based on combinatorial optimization of the mutual ordering of samples. The method is primarily intended to serve as a tool for computationally intensive evaluations of g where there is a need for pilot numerical studies, preliminary and subsequently refined estimations of statistical parameters, optimization of the progressive learning of neural networks, or during experimental design.
Název v anglickém jazyce
Hierarchical refinement of Latin Hypercube Samples
Popis výsledku anglicky
The objective In this article, a novel method for the extension of sample size in Latin Hypercube Sampling (LHS) is suggested. The method can be applied when an initial LH design is employed for the analysis of functions g of a random vector. The article explains how the statistical, sensitivity and reliability analyses of g can be divided into a hierarchical sequence of simulations with subsets of samples of a random vector in such a way that (i) the favorable properties of LHS are retained (the low number of simulations needed for statistically significant estimations of statistical parameters of function g with low estimation variability); (ii) the simulation process can be halted, for example, when the estimations reach a certain prescribed statistical significance. An important aspect of the method is that it efficiently simulates subsets of samples of random vectors while focusing on their correlation structure or any other objective function such as some measure of dependence, spatial distribution uniformity, discrepancy, etc. This is achieved by employing a robust algorithm based on combinatorial optimization of the mutual ordering of samples. The method is primarily intended to serve as a tool for computationally intensive evaluations of g where there is a need for pilot numerical studies, preliminary and subsequently refined estimations of statistical parameters, optimization of the progressive learning of neural networks, or during experimental design.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer-Aided Civil and Infrastructure Engineering
ISSN
1093-9687
e-ISSN
1467-8667
Svazek periodika
2014
Číslo periodika v rámci svazku
00
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000352790800006
EID výsledku v databázi Scopus
2-s2.0-84926526361