Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F16%3APU120345" target="_blank" >RIV/00216305:26110/16:PU120345 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00521-016-2485-3" target="_blank" >http://dx.doi.org/10.1007/s00521-016-2485-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-016-2485-3" target="_blank" >10.1007/s00521-016-2485-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method
Popis výsledku v původním jazyce
An important step when designing and assessing the reliability of existing structures and/or structural elements is to calculate the reliability level described by failure probability or reliability index. Since calculating the structural response of complex systems such as bridges is usually a time-consuming task, the utilization of approximation methods with a view to reducing the computational effort to an acceptable level is an appropriate solution. The paper introduces a small-sample artificial neural network- based response surface method. An artificial neural net- work is used as an approximation (a so-called response surface) of the original limit state function. In order to be as effective as possible with respect to computational effort, a stratified Latin hypercube sampling simulation method is utilized to properly select training set elements. Subsequently, the artificial neural network-based response surface is utilized to calculate failure probability. To increase the accuracy of the determined failure probability, the response surface can be updated close to the failure region. This is performed by finding a new anchor point, which lies close to the design point of the limit state function. The new anchor point is then used to prepare the updated training set. The efficiency of the proposed method is tested for different training set sizes using a nonlinear limit state function taken from the literature, and the reliability assessment of three concrete bridges, one with explicit and two with implicit limit state functions in the form of finite element method models.
Název v anglickém jazyce
Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method
Popis výsledku anglicky
An important step when designing and assessing the reliability of existing structures and/or structural elements is to calculate the reliability level described by failure probability or reliability index. Since calculating the structural response of complex systems such as bridges is usually a time-consuming task, the utilization of approximation methods with a view to reducing the computational effort to an acceptable level is an appropriate solution. The paper introduces a small-sample artificial neural network- based response surface method. An artificial neural net- work is used as an approximation (a so-called response surface) of the original limit state function. In order to be as effective as possible with respect to computational effort, a stratified Latin hypercube sampling simulation method is utilized to properly select training set elements. Subsequently, the artificial neural network-based response surface is utilized to calculate failure probability. To increase the accuracy of the determined failure probability, the response surface can be updated close to the failure region. This is performed by finding a new anchor point, which lies close to the design point of the limit state function. The new anchor point is then used to prepare the updated training set. The efficiency of the proposed method is tested for different training set sizes using a nonlinear limit state function taken from the literature, and the reliability assessment of three concrete bridges, one with explicit and two with implicit limit state functions in the form of finite element method models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEURAL COMPUTING & APPLICATIONS
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
28
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1249-1263
Kód UT WoS článku
000403939000006
EID výsledku v databázi Scopus
2-s2.0-84978745352