Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F16%3APU120345" target="_blank" >RIV/00216305:26110/16:PU120345 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00521-016-2485-3" target="_blank" >http://dx.doi.org/10.1007/s00521-016-2485-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-016-2485-3" target="_blank" >10.1007/s00521-016-2485-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method

  • Popis výsledku v původním jazyce

    An important step when designing and assessing the reliability of existing structures and/or structural elements is to calculate the reliability level described by failure probability or reliability index. Since calculating the structural response of complex systems such as bridges is usually a time-consuming task, the utilization of approximation methods with a view to reducing the computational effort to an acceptable level is an appropriate solution. The paper introduces a small-sample artificial neural network- based response surface method. An artificial neural net- work is used as an approximation (a so-called response surface) of the original limit state function. In order to be as effective as possible with respect to computational effort, a stratified Latin hypercube sampling simulation method is utilized to properly select training set elements. Subsequently, the artificial neural network-based response surface is utilized to calculate failure probability. To increase the accuracy of the determined failure probability, the response surface can be updated close to the failure region. This is performed by finding a new anchor point, which lies close to the design point of the limit state function. The new anchor point is then used to prepare the updated training set. The efficiency of the proposed method is tested for different training set sizes using a nonlinear limit state function taken from the literature, and the reliability assessment of three concrete bridges, one with explicit and two with implicit limit state functions in the form of finite element method models.

  • Název v anglickém jazyce

    Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method

  • Popis výsledku anglicky

    An important step when designing and assessing the reliability of existing structures and/or structural elements is to calculate the reliability level described by failure probability or reliability index. Since calculating the structural response of complex systems such as bridges is usually a time-consuming task, the utilization of approximation methods with a view to reducing the computational effort to an acceptable level is an appropriate solution. The paper introduces a small-sample artificial neural network- based response surface method. An artificial neural net- work is used as an approximation (a so-called response surface) of the original limit state function. In order to be as effective as possible with respect to computational effort, a stratified Latin hypercube sampling simulation method is utilized to properly select training set elements. Subsequently, the artificial neural network-based response surface is utilized to calculate failure probability. To increase the accuracy of the determined failure probability, the response surface can be updated close to the failure region. This is performed by finding a new anchor point, which lies close to the design point of the limit state function. The new anchor point is then used to prepare the updated training set. The efficiency of the proposed method is tested for different training set sizes using a nonlinear limit state function taken from the literature, and the reliability assessment of three concrete bridges, one with explicit and two with implicit limit state functions in the form of finite element method models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NEURAL COMPUTING & APPLICATIONS

  • ISSN

    0941-0643

  • e-ISSN

    1433-3058

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    1249-1263

  • Kód UT WoS článku

    000403939000006

  • EID výsledku v databázi Scopus

    2-s2.0-84978745352