Lateral-torsional buckling of beams of monosymmetrical cross-sections loaded perpendicularly to the axis of symmetry: Theoretical analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU124702" target="_blank" >RIV/00216305:26110/17:PU124702 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/cepa.149" target="_blank" >http://dx.doi.org/10.1002/cepa.149</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cepa.149" target="_blank" >10.1002/cepa.149</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lateral-torsional buckling of beams of monosymmetrical cross-sections loaded perpendicularly to the axis of symmetry: Theoretical analysis
Popis výsledku v původním jazyce
Determination of the critical moment is a crucial step of the process of assessment of the buckling resistance of a metal beam with no intermediate restraints between supports. The critical moment of an ideal beam depends, among others, on support conditions and variation of the bending moment along the span of the beam. It can be found as a solution of the eigenvalue problem of differential equations of bending. This complex procedure can generally provide a formula for the calculation of the critical moment with certain coefficients varying depending on the variation of the bending moment along the span and support conditions of the beam. The formula for the critical moment and numerical values of the coefficients taking into account the type of supports and variation of the bending moment for some common cases can be found in literature. The paper focuses on process of derivation of the formula for calculation of the elastic critical moment of beams of double symmetrical and monosymmetrical cross-sections (channels) loaded perpendicularly to the plane of symmetry. Based on classical Vlasov’s theory and variational method, a formula for the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the plane of symmetry and coefficients for not only simple cases of loads but also selected special cases are derived using mathematical methods and presented in the paper. Numerical values of the above mentioned coefficients are summarized in tables and charts.
Název v anglickém jazyce
Lateral-torsional buckling of beams of monosymmetrical cross-sections loaded perpendicularly to the axis of symmetry: Theoretical analysis
Popis výsledku anglicky
Determination of the critical moment is a crucial step of the process of assessment of the buckling resistance of a metal beam with no intermediate restraints between supports. The critical moment of an ideal beam depends, among others, on support conditions and variation of the bending moment along the span of the beam. It can be found as a solution of the eigenvalue problem of differential equations of bending. This complex procedure can generally provide a formula for the calculation of the critical moment with certain coefficients varying depending on the variation of the bending moment along the span and support conditions of the beam. The formula for the critical moment and numerical values of the coefficients taking into account the type of supports and variation of the bending moment for some common cases can be found in literature. The paper focuses on process of derivation of the formula for calculation of the elastic critical moment of beams of double symmetrical and monosymmetrical cross-sections (channels) loaded perpendicularly to the plane of symmetry. Based on classical Vlasov’s theory and variational method, a formula for the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the plane of symmetry and coefficients for not only simple cases of loads but also selected special cases are derived using mathematical methods and presented in the paper. Numerical values of the above mentioned coefficients are summarized in tables and charts.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ce/papers
ISSN
2509-7075
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
2-3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
1086-1095
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—