Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Lateral-torsional buckling of beams of monosymmetrical cross-sections loaded perpendicularly to the axis of symmetry: Theoretical analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F17%3APU124702" target="_blank" >RIV/00216305:26110/17:PU124702 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/cepa.149" target="_blank" >http://dx.doi.org/10.1002/cepa.149</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/cepa.149" target="_blank" >10.1002/cepa.149</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Lateral-torsional buckling of beams of monosymmetrical cross-sections loaded perpendicularly to the axis of symmetry: Theoretical analysis

  • Popis výsledku v původním jazyce

    Determination of the critical moment is a crucial step of the process of assessment of the buckling resistance of a metal beam with no intermediate restraints between supports. The critical moment of an ideal beam depends, among others, on support conditions and variation of the bending moment along the span of the beam. It can be found as a solution of the eigenvalue problem of differential equations of bending. This complex procedure can generally provide a formula for the calculation of the critical moment with certain coefficients varying depending on the variation of the bending moment along the span and support conditions of the beam. The formula for the critical moment and numerical values of the coefficients taking into account the type of supports and variation of the bending moment for some common cases can be found in literature. The paper focuses on process of derivation of the formula for calculation of the elastic critical moment of beams of double symmetrical and monosymmetrical cross-sections (channels) loaded perpendicularly to the plane of symmetry. Based on classical Vlasov’s theory and variational method, a formula for the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the plane of symmetry and coefficients for not only simple cases of loads but also selected special cases are derived using mathematical methods and presented in the paper. Numerical values of the above mentioned coefficients are summarized in tables and charts.

  • Název v anglickém jazyce

    Lateral-torsional buckling of beams of monosymmetrical cross-sections loaded perpendicularly to the axis of symmetry: Theoretical analysis

  • Popis výsledku anglicky

    Determination of the critical moment is a crucial step of the process of assessment of the buckling resistance of a metal beam with no intermediate restraints between supports. The critical moment of an ideal beam depends, among others, on support conditions and variation of the bending moment along the span of the beam. It can be found as a solution of the eigenvalue problem of differential equations of bending. This complex procedure can generally provide a formula for the calculation of the critical moment with certain coefficients varying depending on the variation of the bending moment along the span and support conditions of the beam. The formula for the critical moment and numerical values of the coefficients taking into account the type of supports and variation of the bending moment for some common cases can be found in literature. The paper focuses on process of derivation of the formula for calculation of the elastic critical moment of beams of double symmetrical and monosymmetrical cross-sections (channels) loaded perpendicularly to the plane of symmetry. Based on classical Vlasov’s theory and variational method, a formula for the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the plane of symmetry and coefficients for not only simple cases of loads but also selected special cases are derived using mathematical methods and presented in the paper. Numerical values of the above mentioned coefficients are summarized in tables and charts.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ce/papers

  • ISSN

    2509-7075

  • e-ISSN

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    2-3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

    1086-1095

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus