Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Problem of Efficient Determination of Elastic Critical Moment of Beams with Selected Types of Cross-Sections

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU131303" target="_blank" >RIV/00216305:26110/19:PU131303 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1088/1757-899X/471/5/052041" target="_blank" >http://dx.doi.org/10.1088/1757-899X/471/5/052041</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1757-899X/471/5/052041" target="_blank" >10.1088/1757-899X/471/5/052041</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Problem of Efficient Determination of Elastic Critical Moment of Beams with Selected Types of Cross-Sections

  • Popis výsledku v původním jazyce

    Assessment of the lateral-torsional buckling resistance of slender metal beams with no intermediate restraints requires the determination of the critical moment. Nowadays, its magnitude can be found using numerical analysis e.g. by means of widely used finite element method but also available derived formulae for the calculation of the critical moment based on the mathematical solution of the eigenvalue problem of differential equations of bending are still of considerable importance. For some common cases of support and load conditions and some specific types of cross-sections of metal beams they allow to practically and reliably calculate the desired magnitude of the critical moment required for the buckling resistance check. The paper focuses on problem of derivation of the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the axis of symmetry. Starting with the Vlasovʼs theory of stability of thin-walled members and variational methods, the process of derivation of the critical moment is briefly described. Whereas in case of beams of prismatic cross-sections the application of this method can subsequently result in general formula for calculation of the critical moment for various support and load conditions, the solution for members with variable cross-sections is much more complex and requires application of specific methods. The paper deals with application of selected methods of numerical mathematics on problem of determination of the elastic critical moment of metal beams and, when possible, compares the obtained values with analytical solution. Special attention is paid to members with variable cross-sections where primarily numerical methods can be used. Based on comparison of results, suitability of the utilized methods applied on problem of lateral-torsional buckling of metal beams is evaluated with significant emphasis on members with variable cross-sections.

  • Název v anglickém jazyce

    On Problem of Efficient Determination of Elastic Critical Moment of Beams with Selected Types of Cross-Sections

  • Popis výsledku anglicky

    Assessment of the lateral-torsional buckling resistance of slender metal beams with no intermediate restraints requires the determination of the critical moment. Nowadays, its magnitude can be found using numerical analysis e.g. by means of widely used finite element method but also available derived formulae for the calculation of the critical moment based on the mathematical solution of the eigenvalue problem of differential equations of bending are still of considerable importance. For some common cases of support and load conditions and some specific types of cross-sections of metal beams they allow to practically and reliably calculate the desired magnitude of the critical moment required for the buckling resistance check. The paper focuses on problem of derivation of the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the axis of symmetry. Starting with the Vlasovʼs theory of stability of thin-walled members and variational methods, the process of derivation of the critical moment is briefly described. Whereas in case of beams of prismatic cross-sections the application of this method can subsequently result in general formula for calculation of the critical moment for various support and load conditions, the solution for members with variable cross-sections is much more complex and requires application of specific methods. The paper deals with application of selected methods of numerical mathematics on problem of determination of the elastic critical moment of metal beams and, when possible, compares the obtained values with analytical solution. Special attention is paid to members with variable cross-sections where primarily numerical methods can be used. Based on comparison of results, suitability of the utilized methods applied on problem of lateral-torsional buckling of metal beams is evaluated with significant emphasis on members with variable cross-sections.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IOP Conference Series: Materials Science and Engineering

  • ISBN

  • ISSN

    1757-8981

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Název nakladatele

    IOP Publishing Ltd

  • Místo vydání

    Bristol

  • Místo konání akce

    Praha

  • Datum konání akce

    18. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000465811801103