On Problem of Efficient Determination of Elastic Critical Moment of Beams with Selected Types of Cross-Sections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU131303" target="_blank" >RIV/00216305:26110/19:PU131303 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1757-899X/471/5/052041" target="_blank" >http://dx.doi.org/10.1088/1757-899X/471/5/052041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1757-899X/471/5/052041" target="_blank" >10.1088/1757-899X/471/5/052041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Problem of Efficient Determination of Elastic Critical Moment of Beams with Selected Types of Cross-Sections
Popis výsledku v původním jazyce
Assessment of the lateral-torsional buckling resistance of slender metal beams with no intermediate restraints requires the determination of the critical moment. Nowadays, its magnitude can be found using numerical analysis e.g. by means of widely used finite element method but also available derived formulae for the calculation of the critical moment based on the mathematical solution of the eigenvalue problem of differential equations of bending are still of considerable importance. For some common cases of support and load conditions and some specific types of cross-sections of metal beams they allow to practically and reliably calculate the desired magnitude of the critical moment required for the buckling resistance check. The paper focuses on problem of derivation of the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the axis of symmetry. Starting with the Vlasovʼs theory of stability of thin-walled members and variational methods, the process of derivation of the critical moment is briefly described. Whereas in case of beams of prismatic cross-sections the application of this method can subsequently result in general formula for calculation of the critical moment for various support and load conditions, the solution for members with variable cross-sections is much more complex and requires application of specific methods. The paper deals with application of selected methods of numerical mathematics on problem of determination of the elastic critical moment of metal beams and, when possible, compares the obtained values with analytical solution. Special attention is paid to members with variable cross-sections where primarily numerical methods can be used. Based on comparison of results, suitability of the utilized methods applied on problem of lateral-torsional buckling of metal beams is evaluated with significant emphasis on members with variable cross-sections.
Název v anglickém jazyce
On Problem of Efficient Determination of Elastic Critical Moment of Beams with Selected Types of Cross-Sections
Popis výsledku anglicky
Assessment of the lateral-torsional buckling resistance of slender metal beams with no intermediate restraints requires the determination of the critical moment. Nowadays, its magnitude can be found using numerical analysis e.g. by means of widely used finite element method but also available derived formulae for the calculation of the critical moment based on the mathematical solution of the eigenvalue problem of differential equations of bending are still of considerable importance. For some common cases of support and load conditions and some specific types of cross-sections of metal beams they allow to practically and reliably calculate the desired magnitude of the critical moment required for the buckling resistance check. The paper focuses on problem of derivation of the elastic critical moment of beams of double symmetrical cross-sections and channels loaded perpendicularly to the axis of symmetry. Starting with the Vlasovʼs theory of stability of thin-walled members and variational methods, the process of derivation of the critical moment is briefly described. Whereas in case of beams of prismatic cross-sections the application of this method can subsequently result in general formula for calculation of the critical moment for various support and load conditions, the solution for members with variable cross-sections is much more complex and requires application of specific methods. The paper deals with application of selected methods of numerical mathematics on problem of determination of the elastic critical moment of metal beams and, when possible, compares the obtained values with analytical solution. Special attention is paid to members with variable cross-sections where primarily numerical methods can be used. Based on comparison of results, suitability of the utilized methods applied on problem of lateral-torsional buckling of metal beams is evaluated with significant emphasis on members with variable cross-sections.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IOP Conference Series: Materials Science and Engineering
ISBN
—
ISSN
1757-8981
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
IOP Publishing Ltd
Místo vydání
Bristol
Místo konání akce
Praha
Datum konání akce
18. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000465811801103