Evaluation of pairwise distances among points forming a regular orthogonal grid in a hypercube
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU129085" target="_blank" >RIV/00216305:26110/18:PU129085 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.vgtu.lt/index.php/JCEM/article/view/5189" target="_blank" >https://journals.vgtu.lt/index.php/JCEM/article/view/5189</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3846/jcem.2018.5189" target="_blank" >10.3846/jcem.2018.5189</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of pairwise distances among points forming a regular orthogonal grid in a hypercube
Popis výsledku v původním jazyce
Cartesian grid is a basic arrangement of points that form a regular orthogonal grid (ROG). In some applications, it is needed to evaluate all pairwise distances among ROG points. This paper focuses on ROG discretization of a unit hypercube of arbitrary dimension. A method for the fast enumeration of all pairwise distances and their counts for a high number of points arranged into high-dimensional ROG is presented. The proposed method exploits the regular and collapsible pattern of ROG to reduce the number of evaluated distances. The number of unique distances is identified and frequencies are determined using combinatorial rules. The measured computational speed-up compared to a naïve approach corresponds to the presented theoretical analysis. The proposed method and algorithm may find applications in various fields. The paper shows application focused on the behaviour of various distance measures with the motivation to find the lower bounds on the criteria of point distribution uniformity in Monte Carlo integration.
Název v anglickém jazyce
Evaluation of pairwise distances among points forming a regular orthogonal grid in a hypercube
Popis výsledku anglicky
Cartesian grid is a basic arrangement of points that form a regular orthogonal grid (ROG). In some applications, it is needed to evaluate all pairwise distances among ROG points. This paper focuses on ROG discretization of a unit hypercube of arbitrary dimension. A method for the fast enumeration of all pairwise distances and their counts for a high number of points arranged into high-dimensional ROG is presented. The proposed method exploits the regular and collapsible pattern of ROG to reduce the number of evaluated distances. The number of unique distances is identified and frequencies are determined using combinatorial rules. The measured computational speed-up compared to a naïve approach corresponds to the presented theoretical analysis. The proposed method and algorithm may find applications in various fields. The paper shows application focused on the behaviour of various distance measures with the motivation to find the lower bounds on the criteria of point distribution uniformity in Monte Carlo integration.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of civil engineering and management
ISSN
1392-3730
e-ISSN
1822-3605
Svazek periodika
24
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
LT - Litevská republika
Počet stran výsledku
14
Strana od-do
410-423
Kód UT WoS článku
000446022400005
EID výsledku v databázi Scopus
—