Polynomial chaos expansion for surrogate modelling: Theory and software
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU129537" target="_blank" >RIV/00216305:26110/18:PU129537 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/best.201800048" target="_blank" >http://dx.doi.org/10.1002/best.201800048</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/best.201800048" target="_blank" >10.1002/best.201800048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial chaos expansion for surrogate modelling: Theory and software
Popis výsledku v původním jazyce
The paper is focused on the application of a surrogate model to reliability analysis. Despite recent advances in this field, the reliability analysis of complex non-linear finite element models is still highly time-consuming. Thus, the approximation of the nonlinear finite element model by a surrogate meta-model is often the only choice if one wishes to perform a sufficient amount of simulations to enable reliability analysis. First, the basic theory of polynomial chaos expansion (PCE) is described, including the transformation of correlated random variables. The usage of the PCE for the estimation of statistical moments and sensitivity analysis is then presented. It can be done efficiently via the post-processing of the employed surrogate model in explicit form without any additional computational demands. The possibility of utilizing the adaptive algorithm Least Angle Regression is also discussed. The implementation of the discussed theory into a software tool, and its application, are presented in the last part of the paper.
Název v anglickém jazyce
Polynomial chaos expansion for surrogate modelling: Theory and software
Popis výsledku anglicky
The paper is focused on the application of a surrogate model to reliability analysis. Despite recent advances in this field, the reliability analysis of complex non-linear finite element models is still highly time-consuming. Thus, the approximation of the nonlinear finite element model by a surrogate meta-model is often the only choice if one wishes to perform a sufficient amount of simulations to enable reliability analysis. First, the basic theory of polynomial chaos expansion (PCE) is described, including the transformation of correlated random variables. The usage of the PCE for the estimation of statistical moments and sensitivity analysis is then presented. It can be done efficiently via the post-processing of the employed surrogate model in explicit form without any additional computational demands. The possibility of utilizing the adaptive algorithm Least Angle Regression is also discussed. The implementation of the discussed theory into a software tool, and its application, are presented in the last part of the paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13212S" target="_blank" >GA18-13212S: Metody plochy odezvy a citlivostní analýzy ve stochastické výpočtové mechanice (RESUS)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Beton und Stahlbeton
ISSN
0005-9900
e-ISSN
1437-1006
Svazek periodika
2
Číslo periodika v rámci svazku
113
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
6
Strana od-do
27-32
Kód UT WoS článku
000444410900006
EID výsledku v databázi Scopus
—