Moment independent sensitivity analysis utilizing polynomial chaos expansion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU134484" target="_blank" >RIV/00216305:26110/19:PU134484 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Moment independent sensitivity analysis utilizing polynomial chaos expansion
Popis výsledku v původním jazyce
An important part of uncertainty quantification is a sensitivity analysis (SA). There are several types of SA methods in scientific papers nowadays. However, it is often computationally demanding or even not feasible to obtain sensitivity indicators in practical applications, especially in a case of mathematical models of physical problems solved by the finite element method. Therefore, it is often necessary to create a surrogate model in an explicit form as an approximation of the original mathematical model. It is shown, that it is beneficial to utilize Polynomial Chaos Expansion (PCE) as a surrogate model due to its possibility of a powerful postprocessing (statistical analysis and analysis of variance). The basic theory of PCE and global sensitivity analysis is briefly overviewed with a special attention to a moment-independent sensitivity analysis (taking whole distribution of random variables into account). The paper is mainly focused on a moment-independent sensitivity analysis based on PCE and
Název v anglickém jazyce
Moment independent sensitivity analysis utilizing polynomial chaos expansion
Popis výsledku anglicky
An important part of uncertainty quantification is a sensitivity analysis (SA). There are several types of SA methods in scientific papers nowadays. However, it is often computationally demanding or even not feasible to obtain sensitivity indicators in practical applications, especially in a case of mathematical models of physical problems solved by the finite element method. Therefore, it is often necessary to create a surrogate model in an explicit form as an approximation of the original mathematical model. It is shown, that it is beneficial to utilize Polynomial Chaos Expansion (PCE) as a surrogate model due to its possibility of a powerful postprocessing (statistical analysis and analysis of variance). The basic theory of PCE and global sensitivity analysis is briefly overviewed with a special attention to a moment-independent sensitivity analysis (taking whole distribution of random variables into account). The paper is mainly focused on a moment-independent sensitivity analysis based on PCE and
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13212S" target="_blank" >GA18-13212S: Metody plochy odezvy a citlivostní analýzy ve stochastické výpočtové mechanice (RESUS)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů