Recent Advances in Polynomial Chaos Expansion: Theory, Applications and Software
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150154" target="_blank" >RIV/00216305:26110/23:PU150154 - isvavai.cz</a>
Výsledek na webu
<a href="http://tces.vsb.cz/Home/" target="_blank" >http://tces.vsb.cz/Home/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.35181/tces-2023-0015" target="_blank" >10.35181/tces-2023-0015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recent Advances in Polynomial Chaos Expansion: Theory, Applications and Software
Popis výsledku v původním jazyce
The paper is focused on recent advances in uncertainty quantification using polynomial chaos expansion (PCE). PCE is a well-known technique for approximation of costly mathematical models with random inputs – surrogate model. Although PCE is a widely used technique and it has several advantages over various surrogate models, it has still several limitations and research gaps. This paper reviews some of the recent theoretical developments in PCE. Specifically a new active learning method optimizing the experimental design and an extension of analytical statistical analysis using PCE will be reviewed. These two topics represent crucial tools for efficient applications: active learning leads generally to a significantly more efficient construction of PCE and improved statistical analysis allows for analytical estimation of higher statistical moments directly from PCE coefficients. Higher statistical moments can be further used for the identification of probability distribution and estimation of design quantiles, which is a crucial task for the probabilistic analysis of structures. Selected applications of the theoretical methods are briefly presented in a context of civil engineering as well as some preliminary results of further research. A part of the paper also presents UQPy package containing state-of-the-art implementation of the PCE theory
Název v anglickém jazyce
Recent Advances in Polynomial Chaos Expansion: Theory, Applications and Software
Popis výsledku anglicky
The paper is focused on recent advances in uncertainty quantification using polynomial chaos expansion (PCE). PCE is a well-known technique for approximation of costly mathematical models with random inputs – surrogate model. Although PCE is a widely used technique and it has several advantages over various surrogate models, it has still several limitations and research gaps. This paper reviews some of the recent theoretical developments in PCE. Specifically a new active learning method optimizing the experimental design and an extension of analytical statistical analysis using PCE will be reviewed. These two topics represent crucial tools for efficient applications: active learning leads generally to a significantly more efficient construction of PCE and improved statistical analysis allows for analytical estimation of higher statistical moments directly from PCE coefficients. Higher statistical moments can be further used for the identification of probability distribution and estimation of design quantiles, which is a crucial task for the probabilistic analysis of structures. Selected applications of the theoretical methods are briefly presented in a context of civil engineering as well as some preliminary results of further research. A part of the paper also presents UQPy package containing state-of-the-art implementation of the PCE theory
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-00774S" target="_blank" >GA22-00774S: Pravděpodobnostní posouzení v mostním inženýrství za užití náhradního metamodelu (MAPAB)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series
ISSN
1804-4824
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
47-53
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—