Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Uncertainty Quantification of Existing Bridge using Polynomial Chaos Expansion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150153" target="_blank" >RIV/00216305:26110/23:PU150153 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://tces.vsb.cz/Home/" target="_blank" >http://tces.vsb.cz/Home/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Uncertainty Quantification of Existing Bridge using Polynomial Chaos Expansion

  • Popis výsledku v původním jazyce

    This paper is focused on uncertainty quantification (UQ) of an existing bridge structure represented by non-linear finite element model (NLFEM). The 3D model was created according to the original drawings and recent inspections of the bridge. In order to reflect the realistic mechanical behavior, the mathematical model is based on non-linear fracture mechanics and the calculation consists of the three construction stages. The single calculation of the NLFEM is very costly and thus even the elementary task of stochastic analysis – the propagation of uncertainties through a mathematical model – is not feasible by Monte Carlotype approach. Thus, UQ is performed via efficient surrogate modeling technique – Polynomial Chaos Expansion (PCE). PCE is a well-known technique for approximation of the costly mathematical models with random inputs, reflecting their distributions and offering fast and accurate post-processing including statistical and sensitivity analysis. Once the PCE was constructed, it was possible to analyze all quantities of interest (QoIs) and analytically estimate Sobol indices as well as the first four statistical moments. Sobol indices directly measure the influence of the input variability to a variability of QoIs. Statistical moments were used for reconstruction of the probability distributions of QoIs, which will be further used for semi-probabilistic assessment. Moreover, once the PCE is available it could be possible to use it for further standard probabilistic or reliability analysis as a computationally efficient approximation of the original mathematical model

  • Název v anglickém jazyce

    Uncertainty Quantification of Existing Bridge using Polynomial Chaos Expansion

  • Popis výsledku anglicky

    This paper is focused on uncertainty quantification (UQ) of an existing bridge structure represented by non-linear finite element model (NLFEM). The 3D model was created according to the original drawings and recent inspections of the bridge. In order to reflect the realistic mechanical behavior, the mathematical model is based on non-linear fracture mechanics and the calculation consists of the three construction stages. The single calculation of the NLFEM is very costly and thus even the elementary task of stochastic analysis – the propagation of uncertainties through a mathematical model – is not feasible by Monte Carlotype approach. Thus, UQ is performed via efficient surrogate modeling technique – Polynomial Chaos Expansion (PCE). PCE is a well-known technique for approximation of the costly mathematical models with random inputs, reflecting their distributions and offering fast and accurate post-processing including statistical and sensitivity analysis. Once the PCE was constructed, it was possible to analyze all quantities of interest (QoIs) and analytically estimate Sobol indices as well as the first four statistical moments. Sobol indices directly measure the influence of the input variability to a variability of QoIs. Statistical moments were used for reconstruction of the probability distributions of QoIs, which will be further used for semi-probabilistic assessment. Moreover, once the PCE is available it could be possible to use it for further standard probabilistic or reliability analysis as a computationally efficient approximation of the original mathematical model

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TM04000012" target="_blank" >TM04000012: Systém pro zjišťování stavu betonových mostů založený na na vzájemné podpoře velkých dat a mechaniky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series

  • ISSN

    1804-4824

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    7

  • Strana od-do

    13-19

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus