GENERALIZATION OF COLORING LINEAR TRANSFORMATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU130577" target="_blank" >RIV/00216305:26110/18:PU130577 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.31490/tces-2018-0013" target="_blank" >http://dx.doi.org/10.31490/tces-2018-0013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31490/tces-2018-0013" target="_blank" >10.31490/tces-2018-0013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GENERALIZATION OF COLORING LINEAR TRANSFORMATION
Popis výsledku v původním jazyce
The paper is focused on the technique of linear transformation between correlated and uncorrelated Gaussian random vectors, which is more or less commonly used in the reliability analysis of structures. These linear transformations are frequently needed to transform uncorrelated random vectors into correlated vectors with a prescribed covariance matrix (coloring transformation), and also to perform an inverse (whitening) transformation, i.e. to decorrelate a random vector with a non-identity covariance matrix. Two well-known linear transformation techniques, namely Cholesky decomposition and eigendecomposition (also known as principal component analysis, or the orthogonal transformation of a covariance matrix), are shown to be special cases of the generalized linear transformation presented in the paper. The proposed generalized linear transformation is able to rotate the transformation randomly, which may be desired in order to remove unwanted directional bias. The conclusions presented herein may be useful for structural reliability analysis with correlated random variables or random fields.
Název v anglickém jazyce
GENERALIZATION OF COLORING LINEAR TRANSFORMATION
Popis výsledku anglicky
The paper is focused on the technique of linear transformation between correlated and uncorrelated Gaussian random vectors, which is more or less commonly used in the reliability analysis of structures. These linear transformations are frequently needed to transform uncorrelated random vectors into correlated vectors with a prescribed covariance matrix (coloring transformation), and also to perform an inverse (whitening) transformation, i.e. to decorrelate a random vector with a non-identity covariance matrix. Two well-known linear transformation techniques, namely Cholesky decomposition and eigendecomposition (also known as principal component analysis, or the orthogonal transformation of a covariance matrix), are shown to be special cases of the generalized linear transformation presented in the paper. The proposed generalized linear transformation is able to rotate the transformation randomly, which may be desired in order to remove unwanted directional bias. The conclusions presented herein may be useful for structural reliability analysis with correlated random variables or random fields.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series
ISSN
1804-4824
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
5
Strana od-do
31-35
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—