Approximation of Voronoï cell attributes using parallel solution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU131818" target="_blank" >RIV/00216305:26110/19:PU131818 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.advengsoft.2019.03.012" target="_blank" >http://dx.doi.org/10.1016/j.advengsoft.2019.03.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advengsoft.2019.03.012" target="_blank" >10.1016/j.advengsoft.2019.03.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximation of Voronoï cell attributes using parallel solution
Popis výsledku v původním jazyce
This paper concerns an algorithm for fast parallel approximation of selected attributes of hyper-dimensional Voronoï cells in a unit hypercube. The presented algorithm does not require the construction of a corresponding Voronoï diagram (usually by employing the Quick Hull algorithm) which typically is a highly computationally demanding task, especially when performed in higher dimensions. The algorithm is suitable for both the clipped and periodic variants of Voronoï tessellation and provides a significant speedup in a convenient range of practical usage. For the purposes of approximation of selected scalar properties of Voronoï cells, only the distances of points in sample are evaluated using an adequately fine underlying orthogonal mesh. The algorithm estimates e.g. the volumes and centroids of Voronoï cells, radii and coordinates of centers of the corresponding Delaunay hyper-circles. The paper also provides quite accurate explicit error estimators for the extracted attributes due to rasterization and thus the user is given a control over the accuracy by selecting an appropriate discretization density. Among numerous fields in which Voronoï diagrams are being utilized, the authors are concerned with optimization of point samples for the Design of Experiments and also with weighting of integration points in Monte Carlo type integration. In these applications, selected scalar topological descriptors of Voronoï diagrams are being repeatedly computed. As the full Voronoï diagram is not of interest but the resulting cell volumes or shape descriptions have to be repeatedly computed, the presented parallel solution seems highly suitable for these applications.
Název v anglickém jazyce
Approximation of Voronoï cell attributes using parallel solution
Popis výsledku anglicky
This paper concerns an algorithm for fast parallel approximation of selected attributes of hyper-dimensional Voronoï cells in a unit hypercube. The presented algorithm does not require the construction of a corresponding Voronoï diagram (usually by employing the Quick Hull algorithm) which typically is a highly computationally demanding task, especially when performed in higher dimensions. The algorithm is suitable for both the clipped and periodic variants of Voronoï tessellation and provides a significant speedup in a convenient range of practical usage. For the purposes of approximation of selected scalar properties of Voronoï cells, only the distances of points in sample are evaluated using an adequately fine underlying orthogonal mesh. The algorithm estimates e.g. the volumes and centroids of Voronoï cells, radii and coordinates of centers of the corresponding Delaunay hyper-circles. The paper also provides quite accurate explicit error estimators for the extracted attributes due to rasterization and thus the user is given a control over the accuracy by selecting an appropriate discretization density. Among numerous fields in which Voronoï diagrams are being utilized, the authors are concerned with optimization of point samples for the Design of Experiments and also with weighting of integration points in Monte Carlo type integration. In these applications, selected scalar topological descriptors of Voronoï diagrams are being repeatedly computed. As the full Voronoï diagram is not of interest but the resulting cell volumes or shape descriptions have to be repeatedly computed, the presented parallel solution seems highly suitable for these applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-22230S" target="_blank" >GA16-22230S: Rozvoj pokročilých simulačních metod pro statistickou analýzu konstrukcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCES IN ENGINEERING SOFTWARE
ISSN
0965-9978
e-ISSN
1873-5339
Svazek periodika
132
Číslo periodika v rámci svazku
132
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
7-17
Kód UT WoS článku
000465171000002
EID výsledku v databázi Scopus
2-s2.0-85063760753