Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approximation of Voronoï cell attributes using parallel solution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU131818" target="_blank" >RIV/00216305:26110/19:PU131818 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.advengsoft.2019.03.012" target="_blank" >http://dx.doi.org/10.1016/j.advengsoft.2019.03.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.advengsoft.2019.03.012" target="_blank" >10.1016/j.advengsoft.2019.03.012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approximation of Voronoï cell attributes using parallel solution

  • Popis výsledku v původním jazyce

    This paper concerns an algorithm for fast parallel approximation of selected attributes of hyper-dimensional Voronoï cells in a unit hypercube. The presented algorithm does not require the construction of a corresponding Voronoï diagram (usually by employing the Quick Hull algorithm) which typically is a highly computationally demanding task, especially when performed in higher dimensions. The algorithm is suitable for both the clipped and periodic variants of Voronoï tessellation and provides a significant speedup in a convenient range of practical usage. For the purposes of approximation of selected scalar properties of Voronoï cells, only the distances of points in sample are evaluated using an adequately fine underlying orthogonal mesh. The algorithm estimates e.g. the volumes and centroids of Voronoï cells, radii and coordinates of centers of the corresponding Delaunay hyper-circles. The paper also provides quite accurate explicit error estimators for the extracted attributes due to rasterization and thus the user is given a control over the accuracy by selecting an appropriate discretization density. Among numerous fields in which Voronoï diagrams are being utilized, the authors are concerned with optimization of point samples for the Design of Experiments and also with weighting of integration points in Monte Carlo type integration. In these applications, selected scalar topological descriptors of Voronoï diagrams are being repeatedly computed. As the full Voronoï diagram is not of interest but the resulting cell volumes or shape descriptions have to be repeatedly computed, the presented parallel solution seems highly suitable for these applications.

  • Název v anglickém jazyce

    Approximation of Voronoï cell attributes using parallel solution

  • Popis výsledku anglicky

    This paper concerns an algorithm for fast parallel approximation of selected attributes of hyper-dimensional Voronoï cells in a unit hypercube. The presented algorithm does not require the construction of a corresponding Voronoï diagram (usually by employing the Quick Hull algorithm) which typically is a highly computationally demanding task, especially when performed in higher dimensions. The algorithm is suitable for both the clipped and periodic variants of Voronoï tessellation and provides a significant speedup in a convenient range of practical usage. For the purposes of approximation of selected scalar properties of Voronoï cells, only the distances of points in sample are evaluated using an adequately fine underlying orthogonal mesh. The algorithm estimates e.g. the volumes and centroids of Voronoï cells, radii and coordinates of centers of the corresponding Delaunay hyper-circles. The paper also provides quite accurate explicit error estimators for the extracted attributes due to rasterization and thus the user is given a control over the accuracy by selecting an appropriate discretization density. Among numerous fields in which Voronoï diagrams are being utilized, the authors are concerned with optimization of point samples for the Design of Experiments and also with weighting of integration points in Monte Carlo type integration. In these applications, selected scalar topological descriptors of Voronoï diagrams are being repeatedly computed. As the full Voronoï diagram is not of interest but the resulting cell volumes or shape descriptions have to be repeatedly computed, the presented parallel solution seems highly suitable for these applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-22230S" target="_blank" >GA16-22230S: Rozvoj pokročilých simulačních metod pro statistickou analýzu konstrukcí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ADVANCES IN ENGINEERING SOFTWARE

  • ISSN

    0965-9978

  • e-ISSN

    1873-5339

  • Svazek periodika

    132

  • Číslo periodika v rámci svazku

    132

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    7-17

  • Kód UT WoS článku

    000465171000002

  • EID výsledku v databázi Scopus

    2-s2.0-85063760753