Experimental and numerical study of turbulent flow around a Fanwings profile
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU132715" target="_blank" >RIV/00216305:26110/19:PU132715 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/full/10.1080/19942060.2019.1639076" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/19942060.2019.1639076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/19942060.2019.1639076" target="_blank" >10.1080/19942060.2019.1639076</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental and numerical study of turbulent flow around a Fanwings profile
Popis výsledku v původním jazyce
The main objective of this paper is an experimental and numerical study of airflow on a propulsive wing also called ventilated wing or FANWING, which is a drone operating at low speed. To optimize the aerodynamic shape of the Fanwing, two different configurations of NACA4415 rectangular wing profile were realized. The first one is a wing where the Cross-Flow Fan is fitted directly to the leading edge with a classic niche. For the second one, we truncated the extension of the niche to create a profile without nose. Two flow velocities with constant fan rotation were used and observed in the range of −16° < α < +30°. A lift coefficient generated by the profiles increases and the drag coefficient decreases, while the distribution of the pressure coefficient on the upper surface increases abruptly because of the flow recirculation. The experiment was performed in a subsonic wind tunnel TE44 and numerical simulations in software Fluent 6.3.2.6. Both approaches are in good agreement. The visualization showed that the recirculation phenomenon occurs right after the discharge of the cross-flow fan. It reveals that the jet coming out of the fan causes a strong wake behind the profile and suppresses the boundary layer separation.
Název v anglickém jazyce
Experimental and numerical study of turbulent flow around a Fanwings profile
Popis výsledku anglicky
The main objective of this paper is an experimental and numerical study of airflow on a propulsive wing also called ventilated wing or FANWING, which is a drone operating at low speed. To optimize the aerodynamic shape of the Fanwing, two different configurations of NACA4415 rectangular wing profile were realized. The first one is a wing where the Cross-Flow Fan is fitted directly to the leading edge with a classic niche. For the second one, we truncated the extension of the niche to create a profile without nose. Two flow velocities with constant fan rotation were used and observed in the range of −16° < α < +30°. A lift coefficient generated by the profiles increases and the drag coefficient decreases, while the distribution of the pressure coefficient on the upper surface increases abruptly because of the flow recirculation. The experiment was performed in a subsonic wind tunnel TE44 and numerical simulations in software Fluent 6.3.2.6. Both approaches are in good agreement. The visualization showed that the recirculation phenomenon occurs right after the discharge of the cross-flow fan. It reveals that the jet coming out of the fan causes a strong wake behind the profile and suppresses the boundary layer separation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Computational Fluid Mechanics
ISSN
1994-2060
e-ISSN
1997-003X
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
5
Strana od-do
698-712
Kód UT WoS článku
000476481800001
EID výsledku v databázi Scopus
2-s2.0-85069452584