Elastic properties of isotropic discrete systems with skew contact normals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU134424" target="_blank" >RIV/00216305:26110/19:PU134424 - isvavai.cz</a>
Výsledek na webu
<a href="https://congress.cimne.com/complas2019/frontal/default.asp" target="_blank" >https://congress.cimne.com/complas2019/frontal/default.asp</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elastic properties of isotropic discrete systems with skew contact normals
Popis výsledku v původním jazyce
The macroscopic elastic properties of discrete assemblies are fundamental characteristics of such systems. The contribution uses homogenization procedure based on equivalence of virtual work between the isotropic elastic continuum and the discrete system to develop analytical formulas for estimation of macroscopic elastic modulus and Poisson’s ratio. Such homogenization was recently used to derive formulas for discrete assemblies where (i) there is no vacant space between the discrete units, (ii) the orientation of contacts is uniformly distributed and (iii) the contact normals are parallel to contact vectors (directions connecting centers of discrete units). The third assumption is now removed, three dimensional systems with arbitrary relation between contact vectors and contact normals are studied here. It is shown that the limits of Poisson’s ratio of such system depends on the relation between contact normal and contact vector. The widest limits are however obtained when these two vectors are parallel. This means that arbitrary manipulations with discrete geometry cannot extend Poisson’s ratio of the system outside the known boundaries.
Název v anglickém jazyce
Elastic properties of isotropic discrete systems with skew contact normals
Popis výsledku anglicky
The macroscopic elastic properties of discrete assemblies are fundamental characteristics of such systems. The contribution uses homogenization procedure based on equivalence of virtual work between the isotropic elastic continuum and the discrete system to develop analytical formulas for estimation of macroscopic elastic modulus and Poisson’s ratio. Such homogenization was recently used to derive formulas for discrete assemblies where (i) there is no vacant space between the discrete units, (ii) the orientation of contacts is uniformly distributed and (iii) the contact normals are parallel to contact vectors (directions connecting centers of discrete units). The third assumption is now removed, three dimensional systems with arbitrary relation between contact vectors and contact normals are studied here. It is shown that the limits of Poisson’s ratio of such system depends on the relation between contact normal and contact vector. The widest limits are however obtained when these two vectors are parallel. This means that arbitrary manipulations with discrete geometry cannot extend Poisson’s ratio of the system outside the known boundaries.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12197S" target="_blank" >GA19-12197S: Sdružená Úloha Mechaniky a Proudění v Betonu Řešená Pomocí Meso-Úrovňového Diskrétního Modelu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
XV International Conference on Computational Plasticity. Fundamentals and Applications (COMPLAS 2019)
ISBN
978-84-949194-7-3
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
305-313
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Barcelona
Datum konání akce
3. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000651800600026