Elastic properties of isotropic discrete systems: Connections between geometric structure and Poisson's ratio
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU135821" target="_blank" >RIV/00216305:26110/20:PU135821 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijsolstr.2019.12.012" target="_blank" >https://doi.org/10.1016/j.ijsolstr.2019.12.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijsolstr.2019.12.012" target="_blank" >10.1016/j.ijsolstr.2019.12.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Elastic properties of isotropic discrete systems: Connections between geometric structure and Poisson's ratio
Popis výsledku v původním jazyce
The use of discrete material representation in numerical models is advantageous due to the straightforward way it takes into account material heterogeneity and randomness, and the discrete and orientated nature of cracks. Unfortunately, it also restricts the macroscopic Poisson’s ratio and therefore narrows its applicability. The paper studies the Poisson’s ratio of a discrete model analytically. It derives theoretical limits for cases where the geometry of the model is completely arbitrary, but isotropic in the statistical sense. It is shown that the widest limits are obtained for models where normal directions of contacts between discrete units are parallel with the vectors connecting these units. Any deviation from parallelism causes the Poisson’s ratio limits to shrink. A comparison of the derived equations to the results of the actual numerical model is presented. It shows relatively large deviations from the theory because the fundamental assumptions behind the theoretical derivations are largely violated in systems with complex geometry. The real shrinking of the Poisson’s ratio limit is less severe compared to that which is theoretically derived.
Název v anglickém jazyce
Elastic properties of isotropic discrete systems: Connections between geometric structure and Poisson's ratio
Popis výsledku anglicky
The use of discrete material representation in numerical models is advantageous due to the straightforward way it takes into account material heterogeneity and randomness, and the discrete and orientated nature of cracks. Unfortunately, it also restricts the macroscopic Poisson’s ratio and therefore narrows its applicability. The paper studies the Poisson’s ratio of a discrete model analytically. It derives theoretical limits for cases where the geometry of the model is completely arbitrary, but isotropic in the statistical sense. It is shown that the widest limits are obtained for models where normal directions of contacts between discrete units are parallel with the vectors connecting these units. Any deviation from parallelism causes the Poisson’s ratio limits to shrink. A comparison of the derived equations to the results of the actual numerical model is presented. It shows relatively large deviations from the theory because the fundamental assumptions behind the theoretical derivations are largely violated in systems with complex geometry. The real shrinking of the Poisson’s ratio limit is less severe compared to that which is theoretically derived.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-12197S" target="_blank" >GA19-12197S: Sdružená Úloha Mechaniky a Proudění v Betonu Řešená Pomocí Meso-Úrovňového Diskrétního Modelu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Solids and Structures
ISSN
0020-7683
e-ISSN
1879-2146
Svazek periodika
191-192
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
254-263
Kód UT WoS článku
000526811800020
EID výsledku v databázi Scopus
2-s2.0-85077356258