Stochastic Spectral Methods in Uncertainty Quantification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU135766" target="_blank" >RIV/00216305:26110/19:PU135766 - isvavai.cz</a>
Výsledek na webu
<a href="http://tces.vsb.cz/Home/ArticleDetail/486" target="_blank" >http://tces.vsb.cz/Home/ArticleDetail/486</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.35181/tces-2019-0019" target="_blank" >10.35181/tces-2019-0019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stochastic Spectral Methods in Uncertainty Quantification
Popis výsledku v původním jazyce
Uncertainty quantification is an important part of a probabilistic design of structures. Nonetheless, common Monte Carlo methods are highly computationally demanding or even not feasible for this task, especially in case of mathematical models of physical problems solved by finite element method. Therefore, the paper is focused on the efficient alternative approach for uncertainty quantification-stochastic spectral expansion, represented herein by Polynomial Chaos Expansion. In recent years, an application of stochastic spectral methods in uncertainty quantification is the topic of research for many scientists in various fields of science and its efficiency was shown by various studies. The paper presents basic theoretical background of polynomial chaos expansion and its connection to uncertainty quantification. The possibility of efficient statistical and sensitivity analysis is investigated and an application in analytical examples with known reference solution is presented herein. Moreover, practical implementation of methodology is discussed and developed SW tool is presented herein.
Název v anglickém jazyce
Stochastic Spectral Methods in Uncertainty Quantification
Popis výsledku anglicky
Uncertainty quantification is an important part of a probabilistic design of structures. Nonetheless, common Monte Carlo methods are highly computationally demanding or even not feasible for this task, especially in case of mathematical models of physical problems solved by finite element method. Therefore, the paper is focused on the efficient alternative approach for uncertainty quantification-stochastic spectral expansion, represented herein by Polynomial Chaos Expansion. In recent years, an application of stochastic spectral methods in uncertainty quantification is the topic of research for many scientists in various fields of science and its efficiency was shown by various studies. The paper presents basic theoretical background of polynomial chaos expansion and its connection to uncertainty quantification. The possibility of efficient statistical and sensitivity analysis is investigated and an application in analytical examples with known reference solution is presented herein. Moreover, practical implementation of methodology is discussed and developed SW tool is presented herein.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13212S" target="_blank" >GA18-13212S: Metody plochy odezvy a citlivostní analýzy ve stochastické výpočtové mechanice (RESUS)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series
ISSN
1804-4824
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
48-53
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—