Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stochastic Spectral Methods in Uncertainty Quantification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F19%3APU135766" target="_blank" >RIV/00216305:26110/19:PU135766 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://tces.vsb.cz/Home/ArticleDetail/486" target="_blank" >http://tces.vsb.cz/Home/ArticleDetail/486</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.35181/tces-2019-0019" target="_blank" >10.35181/tces-2019-0019</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stochastic Spectral Methods in Uncertainty Quantification

  • Popis výsledku v původním jazyce

    Uncertainty quantification is an important part of a probabilistic design of structures. Nonetheless, common Monte Carlo methods are highly computationally demanding or even not feasible for this task, especially in case of mathematical models of physical problems solved by finite element method. Therefore, the paper is focused on the efficient alternative approach for uncertainty quantification-stochastic spectral expansion, represented herein by Polynomial Chaos Expansion. In recent years, an application of stochastic spectral methods in uncertainty quantification is the topic of research for many scientists in various fields of science and its efficiency was shown by various studies. The paper presents basic theoretical background of polynomial chaos expansion and its connection to uncertainty quantification. The possibility of efficient statistical and sensitivity analysis is investigated and an application in analytical examples with known reference solution is presented herein. Moreover, practical implementation of methodology is discussed and developed SW tool is presented herein.

  • Název v anglickém jazyce

    Stochastic Spectral Methods in Uncertainty Quantification

  • Popis výsledku anglicky

    Uncertainty quantification is an important part of a probabilistic design of structures. Nonetheless, common Monte Carlo methods are highly computationally demanding or even not feasible for this task, especially in case of mathematical models of physical problems solved by finite element method. Therefore, the paper is focused on the efficient alternative approach for uncertainty quantification-stochastic spectral expansion, represented herein by Polynomial Chaos Expansion. In recent years, an application of stochastic spectral methods in uncertainty quantification is the topic of research for many scientists in various fields of science and its efficiency was shown by various studies. The paper presents basic theoretical background of polynomial chaos expansion and its connection to uncertainty quantification. The possibility of efficient statistical and sensitivity analysis is investigated and an application in analytical examples with known reference solution is presented herein. Moreover, practical implementation of methodology is discussed and developed SW tool is presented herein.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-13212S" target="_blank" >GA18-13212S: Metody plochy odezvy a citlivostní analýzy ve stochastické výpočtové mechanice (RESUS)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series

  • ISSN

    1804-4824

  • e-ISSN

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    6

  • Strana od-do

    48-53

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus