On Taylor Series Expansion for Statistical Moments of Functions of Correlated Random Variables dagger
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU137276" target="_blank" >RIV/00216305:26110/20:PU137276 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/12/8/1379" target="_blank" >https://www.mdpi.com/2073-8994/12/8/1379</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym12081379" target="_blank" >10.3390/sym12081379</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Taylor Series Expansion for Statistical Moments of Functions of Correlated Random Variables dagger
Popis výsledku v původním jazyce
The paper is focused on Taylor series expansion for statistical analysis of functions of random variables with special attention to correlated input random variables. It is shown that the standard approach leads to significant deviations in estimated variance of non-linear functions. Moreover, input random variables are often correlated in industrial applications; thus, it is crucial to obtain accurate estimations of partial derivatives by a numerical differencing scheme. Therefore, a novel methodology for construction of Taylor series expansion of increasing complexity of differencing schemes is proposed and applied on several analytical examples. The methodology is adapted for engineering applications by proposed asymmetric difference quotients in combination with a specific step-size parameter. It is shown that proposed differencing schemes are suitable for functions of correlated random variables. Finally, the accuracy, efficiency, and limitations of the proposed methodology are discussed.
Název v anglickém jazyce
On Taylor Series Expansion for Statistical Moments of Functions of Correlated Random Variables dagger
Popis výsledku anglicky
The paper is focused on Taylor series expansion for statistical analysis of functions of random variables with special attention to correlated input random variables. It is shown that the standard approach leads to significant deviations in estimated variance of non-linear functions. Moreover, input random variables are often correlated in industrial applications; thus, it is crucial to obtain accurate estimations of partial derivatives by a numerical differencing scheme. Therefore, a novel methodology for construction of Taylor series expansion of increasing complexity of differencing schemes is proposed and applied on several analytical examples. The methodology is adapted for engineering applications by proposed asymmetric difference quotients in combination with a specific step-size parameter. It is shown that proposed differencing schemes are suitable for functions of correlated random variables. Finally, the accuracy, efficiency, and limitations of the proposed methodology are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13212S" target="_blank" >GA18-13212S: Metody plochy odezvy a citlivostní analýzy ve stochastické výpočtové mechanice (RESUS)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000564671300001
EID výsledku v databázi Scopus
2-s2.0-85090276408