Estimation of coefficient of variation for structural analysis: The correlation interval approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU141225" target="_blank" >RIV/00216305:26110/21:PU141225 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0167473021000254" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0167473021000254</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.strusafe.2021.102101" target="_blank" >10.1016/j.strusafe.2021.102101</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of coefficient of variation for structural analysis: The correlation interval approach
Popis výsledku v původním jazyce
The paper is focused on the efficient estimation of the coefficient of variation for functions of correlated and uncorrelated random variables. Specifically, the paper deals with time-consuming functions solved by the non-linear finite element method. In this case, the semi-probabilistic methods must reduce the number of simulations as much as possible under several simplifying assumptions while preserving the accuracy of the obtained results. The selected commonly used methods are reviewed with the intent of investigating their theoretical background, assumptions and limitations. It is shown, that Taylor series expansion can be modified for fully correlated random variables, which leads to a significant reduction in the number of simulations independent of the dimension of the stochastic model (the number of input random variables). The concept of the interval estimation of the coefficient of variation using Taylor series expansion is proposed and applied to numerical examples of increasing complexity. It is shown that the obtained results correspond to the theoretical conclusions of the proposed method.
Název v anglickém jazyce
Estimation of coefficient of variation for structural analysis: The correlation interval approach
Popis výsledku anglicky
The paper is focused on the efficient estimation of the coefficient of variation for functions of correlated and uncorrelated random variables. Specifically, the paper deals with time-consuming functions solved by the non-linear finite element method. In this case, the semi-probabilistic methods must reduce the number of simulations as much as possible under several simplifying assumptions while preserving the accuracy of the obtained results. The selected commonly used methods are reviewed with the intent of investigating their theoretical background, assumptions and limitations. It is shown, that Taylor series expansion can be modified for fully correlated random variables, which leads to a significant reduction in the number of simulations independent of the dimension of the stochastic model (the number of input random variables). The concept of the interval estimation of the coefficient of variation using Taylor series expansion is proposed and applied to numerical examples of increasing complexity. It is shown that the obtained results correspond to the theoretical conclusions of the proposed method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01781S" target="_blank" >GA20-01781S: Modelování nejistot při hodnocení spolehlivosti betonových konstrukcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Structural Safety
ISSN
0167-4730
e-ISSN
1879-3355
Svazek periodika
92
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000659220400004
EID výsledku v databázi Scopus
2-s2.0-85104356969