Neural Network-Based Train Identification in Railway Switches and Crossings Using Accelerometer Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F20%3APU138548" target="_blank" >RIV/00216305:26110/20:PU138548 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.hindawi.com/journals/jat/2020/8841810/" target="_blank" >https://www.hindawi.com/journals/jat/2020/8841810/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2020/8841810" target="_blank" >10.1155/2020/8841810</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Network-Based Train Identification in Railway Switches and Crossings Using Accelerometer Data
Popis výsledku v původním jazyce
This paper aims to analyse possibilities of train type identification in railway switches and crossings (S&C) based on accelerometer data by using contemporary machine learning methods such as neural networks. That is a unique approach since trains have been only identified in a straight track. Accelerometer sensors placed around the S&C structure were the source of input data for subsequent models. Data from four S&C at different locations were considered and various neural network architectures evaluated. The research indicated the feasibility to identify trains in S&C using neural networks from accelerometer data. Models trained at one location are generally transferable to another location despite differences in geometrical parameters, substructure, and direction of passing trains. Other challenges include small dataset and speed variation of the trains that must be considered for accurate identification. Results are obtained using statistical bootstrapping and are presented in a form of confusion matrices.
Název v anglickém jazyce
Neural Network-Based Train Identification in Railway Switches and Crossings Using Accelerometer Data
Popis výsledku anglicky
This paper aims to analyse possibilities of train type identification in railway switches and crossings (S&C) based on accelerometer data by using contemporary machine learning methods such as neural networks. That is a unique approach since trains have been only identified in a straight track. Accelerometer sensors placed around the S&C structure were the source of input data for subsequent models. Data from four S&C at different locations were considered and various neural network architectures evaluated. The research indicated the feasibility to identify trains in S&C using neural networks from accelerometer data. Models trained at one location are generally transferable to another location despite differences in geometrical parameters, substructure, and direction of passing trains. Other challenges include small dataset and speed variation of the trains that must be considered for accurate identification. Results are obtained using statistical bootstrapping and are presented in a form of confusion matrices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/CK01000091" target="_blank" >CK01000091: Výhybka 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF ADVANCED TRANSPORTATION
ISSN
0197-6729
e-ISSN
2042-3195
Svazek periodika
2020
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000598343000004
EID výsledku v databázi Scopus
2-s2.0-85097578500