New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU143150" target="_blank" >RIV/00216305:26110/21:PU143150 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/9/19/2425/pdf" target="_blank" >https://www.mdpi.com/2227-7390/9/19/2425/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9192425" target="_blank" >10.3390/math9192425</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability
Popis výsledku v původním jazyce
This article presents new sensitivity measures in reliability-oriented global sensitivity analysis. The obtained results show that the contrast and the newly proposed sensitivity measures (entropy and two others) effectively describe the influence of input random variables on the probability of failure Pf. The contrast sensitivity measure builds on Sobol, using the variance of the binary outcome as either a success (0) or a failure (1). In Bernoulli distribution, variance Pf(1 - Pf) and discrete entropy -Pf ln(Pf) -(1-Pf) ln(1-Pf) are similar to dome functions. By replacing the variance with discrete entropy, a new alternative sensitivity measure is obtained, and then two additional new alternative measures are derived. It is shown that the desired property of all the measures is a dome shape; the rise is not important. Although the decomposition of sensitivity indices with alternative measures is not proven, the case studies suggest a rationale structure of all the indices in the sensitivity analysis of small Pf. The sensitivity ranking of input variables based on the total indices is approximately the same, but the proportions of the first-order and the higher-order indices are very different. Discrete entropy gives significantly higher proportions of first-order sensitivity indices than the other sensitivity measures, presenting entropy as an interesting new sensitivity measure of engineering reliability.
Název v anglickém jazyce
New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability
Popis výsledku anglicky
This article presents new sensitivity measures in reliability-oriented global sensitivity analysis. The obtained results show that the contrast and the newly proposed sensitivity measures (entropy and two others) effectively describe the influence of input random variables on the probability of failure Pf. The contrast sensitivity measure builds on Sobol, using the variance of the binary outcome as either a success (0) or a failure (1). In Bernoulli distribution, variance Pf(1 - Pf) and discrete entropy -Pf ln(Pf) -(1-Pf) ln(1-Pf) are similar to dome functions. By replacing the variance with discrete entropy, a new alternative sensitivity measure is obtained, and then two additional new alternative measures are derived. It is shown that the desired property of all the measures is a dome shape; the rise is not important. Although the decomposition of sensitivity indices with alternative measures is not proven, the case studies suggest a rationale structure of all the indices in the sensitivity analysis of small Pf. The sensitivity ranking of input variables based on the total indices is approximately the same, but the proportions of the first-order and the higher-order indices are very different. Discrete entropy gives significantly higher proportions of first-order sensitivity indices than the other sensitivity measures, presenting entropy as an interesting new sensitivity measure of engineering reliability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01734S" target="_blank" >GA20-01734S: Pravděpodobnostně orientovaná globální citlivostní měření konstrukční spolehlivosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000709197200001
EID výsledku v databázi Scopus
2-s2.0-85116364260