Quantification of Model Uncertainty Based on Variance and Entropy of Bernoulli Distribution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU147154" target="_blank" >RIV/00216305:26110/22:PU147154 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/21/3980" target="_blank" >https://www.mdpi.com/2227-7390/10/21/3980</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10213980" target="_blank" >10.3390/math10213980</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantification of Model Uncertainty Based on Variance and Entropy of Bernoulli Distribution
Popis výsledku v původním jazyce
This article studies the role of model uncertainties in sensitivity and probability analysis of reliability. The measure of reliability is failure probability. The failure probability is analysed using the Bernoulli distribution with binary outcomes of success (0) and failure (1). Deeper connections between Shannon entropy and variance are explored. Model uncertainties increase the heterogeneity in the data 0 and 1. The article proposes a new methodology for quantifying model uncertainties based on the equality of variance and entropy. This methodology is briefly called "variance = entropy". It is useful for stochastic computational models without additional information. The "variance = entropy" rule estimates the "safe" failure probability with the added effect of model uncertainties without adding random variables to the computational model. Case studies are presented with seven variants of model uncertainties that can increase the variance to the entropy value. Although model uncertainties are justified in the assessment of reliability, they can distort the results of the global sensitivity analysis of the basic input variables. The solution to this problem is a global sensitivity analysis of failure probability without added model uncertainties. This paper shows that Shannon entropy is a good sensitivity measure that is useful for quantifying model uncertainties.
Název v anglickém jazyce
Quantification of Model Uncertainty Based on Variance and Entropy of Bernoulli Distribution
Popis výsledku anglicky
This article studies the role of model uncertainties in sensitivity and probability analysis of reliability. The measure of reliability is failure probability. The failure probability is analysed using the Bernoulli distribution with binary outcomes of success (0) and failure (1). Deeper connections between Shannon entropy and variance are explored. Model uncertainties increase the heterogeneity in the data 0 and 1. The article proposes a new methodology for quantifying model uncertainties based on the equality of variance and entropy. This methodology is briefly called "variance = entropy". It is useful for stochastic computational models without additional information. The "variance = entropy" rule estimates the "safe" failure probability with the added effect of model uncertainties without adding random variables to the computational model. Case studies are presented with seven variants of model uncertainties that can increase the variance to the entropy value. Although model uncertainties are justified in the assessment of reliability, they can distort the results of the global sensitivity analysis of the basic input variables. The solution to this problem is a global sensitivity analysis of failure probability without added model uncertainties. This paper shows that Shannon entropy is a good sensitivity measure that is useful for quantifying model uncertainties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01734S" target="_blank" >GA20-01734S: Pravděpodobnostně orientovaná globální citlivostní měření konstrukční spolehlivosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000882301000001
EID výsledku v databázi Scopus
2-s2.0-85141695110