Solution of weakly delayed linear two-dimensional discrete systems with constant coefficients and multiple delays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU144285" target="_blank" >RIV/00216305:26110/22:PU144285 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0081835" target="_blank" >https://doi.org/10.1063/5.0081835</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0081835" target="_blank" >10.1063/5.0081835</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solution of weakly delayed linear two-dimensional discrete systems with constant coefficients and multiple delays
Popis výsledku v původním jazyce
A solution of weakly delayed two-dimensional linear discrete systems with constant coefficients and multiple delays $$ x(k+1)=Ax(k)+sumlimits_{l=1}^{n}B^{l}x(k-m_{l}),,,,kge 0 $$ is presented. In the system, $n$ and $m_{i}$, $i=1,dots,n$ are positive integers, $m_1<m_2<dots<m_n$, $A$, $B^{i}$, $i=1,dots, n$ are nonzero $2times 2$ constant matrices and $xcolon {-m_n,dots,infty}tomathbb R^2$ is a solution. Formulas for general solutions are derived. For $kge m_n$, these general solutions can also be derived by transforming general solutions of certain linear systems without delays.
Název v anglickém jazyce
Solution of weakly delayed linear two-dimensional discrete systems with constant coefficients and multiple delays
Popis výsledku anglicky
A solution of weakly delayed two-dimensional linear discrete systems with constant coefficients and multiple delays $$ x(k+1)=Ax(k)+sumlimits_{l=1}^{n}B^{l}x(k-m_{l}),,,,kge 0 $$ is presented. In the system, $n$ and $m_{i}$, $i=1,dots,n$ are positive integers, $m_1<m_2<dots<m_n$, $A$, $B^{i}$, $i=1,dots, n$ are nonzero $2times 2$ constant matrices and $xcolon {-m_n,dots,infty}tomathbb R^2$ is a solution. Formulas for general solutions are derived. For $kge m_n$, these general solutions can also be derived by transforming general solutions of certain linear systems without delays.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2020
ISBN
978-0-7354-4182-8
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
4
Strana od-do
„270010-1“-„270010-4“
Název nakladatele
American Institute of Physics
Místo vydání
Melville (USA)
Místo konání akce
Rhodes, Greece
Datum konání akce
17. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—