Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A utilization of the inverse response surface method for the reliability-based design of structures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU145235" target="_blank" >RIV/00216305:26110/22:PU145235 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00521-022-07149-w" target="_blank" >https://link.springer.com/article/10.1007/s00521-022-07149-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-022-07149-w" target="_blank" >10.1007/s00521-022-07149-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A utilization of the inverse response surface method for the reliability-based design of structures

  • Popis výsledku v původním jazyce

    The paper discusses the pitfalls of using response surface methods when solving inverse problems and presents an adaptive artificial neural network-based inverse response surface method. The procedure is based on a coupling of the adaptive response surface method and artificial neural network-based inverse reliability analysis. The validity and accuracy of the method are tested on several examples. The first is a problem with a theoretical explicit nonlinear limit state function and one design parameter. Here, the accuracy of surrogate models for design parameter identification was tested for cases with the target values of the identified parameter both inside and outside of the initial range of values. The absolute percentage errors were 11.79 % and 0.19 % after the first and the last iteration of the identification process, respectively. The other two examples represent practical applications of the reliability design of structures with multiple design parameters and multiple reliability constraints. In the former, the limit state functions are defined explicitly, while in the latter, they are defined implicitly in the form of a structural analysis using the nonlinear finite element method. When assessing the reliability index values, very low absolute percentage error values were obtained in both examples. For the explicit form of the limit state function, the values were up to 0.50 % in all iterations. In the case of the implicitly defined limit state function, the absolute percentage error was equal to 6.45 % after the fist iteration and 0.79 % after the second iteration.

  • Název v anglickém jazyce

    A utilization of the inverse response surface method for the reliability-based design of structures

  • Popis výsledku anglicky

    The paper discusses the pitfalls of using response surface methods when solving inverse problems and presents an adaptive artificial neural network-based inverse response surface method. The procedure is based on a coupling of the adaptive response surface method and artificial neural network-based inverse reliability analysis. The validity and accuracy of the method are tested on several examples. The first is a problem with a theoretical explicit nonlinear limit state function and one design parameter. Here, the accuracy of surrogate models for design parameter identification was tested for cases with the target values of the identified parameter both inside and outside of the initial range of values. The absolute percentage errors were 11.79 % and 0.19 % after the first and the last iteration of the identification process, respectively. The other two examples represent practical applications of the reliability design of structures with multiple design parameters and multiple reliability constraints. In the former, the limit state functions are defined explicitly, while in the latter, they are defined implicitly in the form of a structural analysis using the nonlinear finite element method. When assessing the reliability index values, very low absolute percentage error values were obtained in both examples. For the explicit form of the limit state function, the values were up to 0.50 % in all iterations. In the case of the implicitly defined limit state function, the absolute percentage error was equal to 6.45 % after the fist iteration and 0.79 % after the second iteration.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-01734S" target="_blank" >GA20-01734S: Pravděpodobnostně orientovaná globální citlivostní měření konstrukční spolehlivosti</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NEURAL COMPUTING & APPLICATIONS

  • ISSN

    0941-0643

  • e-ISSN

    1433-3058

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    12845-12859

  • Kód UT WoS článku

    000772273700002

  • EID výsledku v databázi Scopus

    2-s2.0-85126906207