A utilization of the inverse response surface method for the reliability-based design of structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU145235" target="_blank" >RIV/00216305:26110/22:PU145235 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00521-022-07149-w" target="_blank" >https://link.springer.com/article/10.1007/s00521-022-07149-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-022-07149-w" target="_blank" >10.1007/s00521-022-07149-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A utilization of the inverse response surface method for the reliability-based design of structures
Popis výsledku v původním jazyce
The paper discusses the pitfalls of using response surface methods when solving inverse problems and presents an adaptive artificial neural network-based inverse response surface method. The procedure is based on a coupling of the adaptive response surface method and artificial neural network-based inverse reliability analysis. The validity and accuracy of the method are tested on several examples. The first is a problem with a theoretical explicit nonlinear limit state function and one design parameter. Here, the accuracy of surrogate models for design parameter identification was tested for cases with the target values of the identified parameter both inside and outside of the initial range of values. The absolute percentage errors were 11.79 % and 0.19 % after the first and the last iteration of the identification process, respectively. The other two examples represent practical applications of the reliability design of structures with multiple design parameters and multiple reliability constraints. In the former, the limit state functions are defined explicitly, while in the latter, they are defined implicitly in the form of a structural analysis using the nonlinear finite element method. When assessing the reliability index values, very low absolute percentage error values were obtained in both examples. For the explicit form of the limit state function, the values were up to 0.50 % in all iterations. In the case of the implicitly defined limit state function, the absolute percentage error was equal to 6.45 % after the fist iteration and 0.79 % after the second iteration.
Název v anglickém jazyce
A utilization of the inverse response surface method for the reliability-based design of structures
Popis výsledku anglicky
The paper discusses the pitfalls of using response surface methods when solving inverse problems and presents an adaptive artificial neural network-based inverse response surface method. The procedure is based on a coupling of the adaptive response surface method and artificial neural network-based inverse reliability analysis. The validity and accuracy of the method are tested on several examples. The first is a problem with a theoretical explicit nonlinear limit state function and one design parameter. Here, the accuracy of surrogate models for design parameter identification was tested for cases with the target values of the identified parameter both inside and outside of the initial range of values. The absolute percentage errors were 11.79 % and 0.19 % after the first and the last iteration of the identification process, respectively. The other two examples represent practical applications of the reliability design of structures with multiple design parameters and multiple reliability constraints. In the former, the limit state functions are defined explicitly, while in the latter, they are defined implicitly in the form of a structural analysis using the nonlinear finite element method. When assessing the reliability index values, very low absolute percentage error values were obtained in both examples. For the explicit form of the limit state function, the values were up to 0.50 % in all iterations. In the case of the implicitly defined limit state function, the absolute percentage error was equal to 6.45 % after the fist iteration and 0.79 % after the second iteration.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01734S" target="_blank" >GA20-01734S: Pravděpodobnostně orientovaná globální citlivostní měření konstrukční spolehlivosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEURAL COMPUTING & APPLICATIONS
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
34
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
12845-12859
Kód UT WoS článku
000772273700002
EID výsledku v databázi Scopus
2-s2.0-85126906207