Surrogate Modeling for Stochastic Assessment of Engineering Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU149731" target="_blank" >RIV/00216305:26110/23:PU149731 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-25891-6_29" target="_blank" >http://dx.doi.org/10.1007/978-3-031-25891-6_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-25891-6_29" target="_blank" >10.1007/978-3-031-25891-6_29</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surrogate Modeling for Stochastic Assessment of Engineering Structures
Popis výsledku v původním jazyce
In many engineering problems, the response function such as the strain or stress field of the structure, its load-bearing capacity, deflection, etc., comes from a finite element method discretization and is therefore very expensive to evaluate. For this reason, methods that replace the original computationally expensive (high-fidelity) model with a simpler (low-fidelity) model that is fast to evaluate are desirable. This paper is focused on the comparison of two surrogate modeling techniques and their potential for stochastic analysis of engineering structures; polynomial chaos expansion and artificial neural network are compared in two typical engineering applications. The first example represents a typical engineering problem with a known analytical solution, the maximum deflection of a fixed beam loaded with a single force. The second example represents a real-world implicitly defined and computationally demanding engineering problem, an existing bridge made of post-tensioned concrete girders.
Název v anglickém jazyce
Surrogate Modeling for Stochastic Assessment of Engineering Structures
Popis výsledku anglicky
In many engineering problems, the response function such as the strain or stress field of the structure, its load-bearing capacity, deflection, etc., comes from a finite element method discretization and is therefore very expensive to evaluate. For this reason, methods that replace the original computationally expensive (high-fidelity) model with a simpler (low-fidelity) model that is fast to evaluate are desirable. This paper is focused on the comparison of two surrogate modeling techniques and their potential for stochastic analysis of engineering structures; polynomial chaos expansion and artificial neural network are compared in two typical engineering applications. The first example represents a typical engineering problem with a known analytical solution, the maximum deflection of a fixed beam loaded with a single force. The second example represents a real-world implicitly defined and computationally demanding engineering problem, an existing bridge made of post-tensioned concrete girders.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-00774S" target="_blank" >GA22-00774S: Pravděpodobnostní posouzení v mostním inženýrství za užití náhradního metamodelu (MAPAB)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
9783031258909
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
388-401
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Germany
Místo konání akce
Certosa di Pontignano, Italy
Datum konání akce
18. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000995538200029