On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73598638" target="_blank" >RIV/61989592:15310/20:73598638 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333178524" target="_blank" >https://obd.upol.cz/id_publ/333178524</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2514/6.2020-1867" target="_blank" >10.2514/6.2020-1867</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design
Popis výsledku v původním jazyce
Multi-objective Bayesian optimization (BO) is a highly useful class of methods that can effectively solve computationally expensive engineering design optimization problems with multiple objectives. However, the impact of covariance function, which is an important part of multi-objective BO, is rarely studied in the context of engineering optimization. We aim to shed light on this issue by performing numerical experiments on engineering design optimization problems, primarily low-fidelity problems so that we are able to statistically evaluate the performance of BO methods with various covariance functions. In this paper, we performed the study using a set of subsonic airfoil optimization cases as benchmark problems. Expected hypervolume improvement was used as the acquisition function to enrich the experimental design. Results show that the choice of the covariance function give a notable impact on the performance of multi-objective BO. In this regard, Kriging models with Matern-3/2 is the most robust method in terms of the diversity and convergence to the Pareto front that can handle problems with various complexities.
Název v anglickém jazyce
On the Impact of Covariance Functions in Multi-Objective Bayesian Optimization for Engineering Design
Popis výsledku anglicky
Multi-objective Bayesian optimization (BO) is a highly useful class of methods that can effectively solve computationally expensive engineering design optimization problems with multiple objectives. However, the impact of covariance function, which is an important part of multi-objective BO, is rarely studied in the context of engineering optimization. We aim to shed light on this issue by performing numerical experiments on engineering design optimization problems, primarily low-fidelity problems so that we are able to statistically evaluate the performance of BO methods with various covariance functions. In this paper, we performed the study using a set of subsonic airfoil optimization cases as benchmark problems. Expected hypervolume improvement was used as the acquisition function to enrich the experimental design. Results show that the choice of the covariance function give a notable impact on the performance of multi-objective BO. In this regard, Kriging models with Matern-3/2 is the most robust method in terms of the diversity and convergence to the Pareto front that can handle problems with various complexities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamický design čerpadel</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIAA Scitech 2020 Forum
ISBN
978-1-62410-595-1
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
1-13
Název nakladatele
American Institute of Aeronautics and Astronautics, Inc.
Místo vydání
Orlando, FL
Místo konání akce
Orlando, FL, USA
Datum konání akce
6. 1. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—