A Novel Many-Objective Sine-Cosine Algorithm (MaOSCA) for Engineering Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252497" target="_blank" >RIV/61989100:27230/23:10252497 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000998270800001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000998270800001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11102301" target="_blank" >10.3390/math11102301</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Many-Objective Sine-Cosine Algorithm (MaOSCA) for Engineering Applications
Popis výsledku v původním jazyce
In recent times, numerous innovative and specialized algorithms have emerged to tackle two and three multi-objective types of problems. However, their effectiveness on many-objective challenges remains uncertain. This paper introduces a new Many-objective Sine-Cosine Algorithm (MaOSCA), which employs a reference point mechanism and information feedback principle to achieve efficient, effective, productive, and robust performance. The MaOSCA algorithm's capabilities are enhanced by incorporating multiple features that balance exploration and exploitation, direct the search towards promising areas, and prevent search stagnation. The MaOSCA's performance is evaluated against popular algorithms such as the Non-dominated sorting genetic algorithm-III (NSGA-III), the Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) integrated with Differential Evolution (MOEADDE), the Many-objective Particle Swarm Optimizer (MaOPSO), and the Many-objective JAYA Algorithm (MaOJAYA) across various test suites, including DTLZ1-DTLZ7 with 5, 9, and 15 objectives and car cab design, water resources management, car side impact, marine design, and 10-bar truss engineering design problems. The performance evaluation is carried out using various performance metrics. The MaOSCA demonstrates its ability to achieve well-converged and diversified solutions for most problems. The success of the MaOSCA can be attributed to the multiple features of the SCA optimizer integrated into the algorithm.
Název v anglickém jazyce
A Novel Many-Objective Sine-Cosine Algorithm (MaOSCA) for Engineering Applications
Popis výsledku anglicky
In recent times, numerous innovative and specialized algorithms have emerged to tackle two and three multi-objective types of problems. However, their effectiveness on many-objective challenges remains uncertain. This paper introduces a new Many-objective Sine-Cosine Algorithm (MaOSCA), which employs a reference point mechanism and information feedback principle to achieve efficient, effective, productive, and robust performance. The MaOSCA algorithm's capabilities are enhanced by incorporating multiple features that balance exploration and exploitation, direct the search towards promising areas, and prevent search stagnation. The MaOSCA's performance is evaluated against popular algorithms such as the Non-dominated sorting genetic algorithm-III (NSGA-III), the Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) integrated with Differential Evolution (MOEADDE), the Many-objective Particle Swarm Optimizer (MaOPSO), and the Many-objective JAYA Algorithm (MaOJAYA) across various test suites, including DTLZ1-DTLZ7 with 5, 9, and 15 objectives and car cab design, water resources management, car side impact, marine design, and 10-bar truss engineering design problems. The performance evaluation is carried out using various performance metrics. The MaOSCA demonstrates its ability to achieve well-converged and diversified solutions for most problems. The success of the MaOSCA can be attributed to the multiple features of the SCA optimizer integrated into the algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
000998270800001
EID výsledku v databázi Scopus
—