Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Novel Many-Objective Sine-Cosine Algorithm (MaOSCA) for Engineering Applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252497" target="_blank" >RIV/61989100:27230/23:10252497 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000998270800001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000998270800001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math11102301" target="_blank" >10.3390/math11102301</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Novel Many-Objective Sine-Cosine Algorithm (MaOSCA) for Engineering Applications

  • Popis výsledku v původním jazyce

    In recent times, numerous innovative and specialized algorithms have emerged to tackle two and three multi-objective types of problems. However, their effectiveness on many-objective challenges remains uncertain. This paper introduces a new Many-objective Sine-Cosine Algorithm (MaOSCA), which employs a reference point mechanism and information feedback principle to achieve efficient, effective, productive, and robust performance. The MaOSCA algorithm&apos;s capabilities are enhanced by incorporating multiple features that balance exploration and exploitation, direct the search towards promising areas, and prevent search stagnation. The MaOSCA&apos;s performance is evaluated against popular algorithms such as the Non-dominated sorting genetic algorithm-III (NSGA-III), the Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) integrated with Differential Evolution (MOEADDE), the Many-objective Particle Swarm Optimizer (MaOPSO), and the Many-objective JAYA Algorithm (MaOJAYA) across various test suites, including DTLZ1-DTLZ7 with 5, 9, and 15 objectives and car cab design, water resources management, car side impact, marine design, and 10-bar truss engineering design problems. The performance evaluation is carried out using various performance metrics. The MaOSCA demonstrates its ability to achieve well-converged and diversified solutions for most problems. The success of the MaOSCA can be attributed to the multiple features of the SCA optimizer integrated into the algorithm.

  • Název v anglickém jazyce

    A Novel Many-Objective Sine-Cosine Algorithm (MaOSCA) for Engineering Applications

  • Popis výsledku anglicky

    In recent times, numerous innovative and specialized algorithms have emerged to tackle two and three multi-objective types of problems. However, their effectiveness on many-objective challenges remains uncertain. This paper introduces a new Many-objective Sine-Cosine Algorithm (MaOSCA), which employs a reference point mechanism and information feedback principle to achieve efficient, effective, productive, and robust performance. The MaOSCA algorithm&apos;s capabilities are enhanced by incorporating multiple features that balance exploration and exploitation, direct the search towards promising areas, and prevent search stagnation. The MaOSCA&apos;s performance is evaluated against popular algorithms such as the Non-dominated sorting genetic algorithm-III (NSGA-III), the Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) integrated with Differential Evolution (MOEADDE), the Many-objective Particle Swarm Optimizer (MaOPSO), and the Many-objective JAYA Algorithm (MaOJAYA) across various test suites, including DTLZ1-DTLZ7 with 5, 9, and 15 objectives and car cab design, water resources management, car side impact, marine design, and 10-bar truss engineering design problems. The performance evaluation is carried out using various performance metrics. The MaOSCA demonstrates its ability to achieve well-converged and diversified solutions for most problems. The success of the MaOSCA can be attributed to the multiple features of the SCA optimizer integrated into the algorithm.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    28

  • Strana od-do

  • Kód UT WoS článku

    000998270800001

  • EID výsledku v databázi Scopus