Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019107" target="_blank" >RIV/62690094:18470/22:50019107 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/22/5/1795" target="_blank" >https://www.mdpi.com/1424-8220/22/5/1795</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s22051795" target="_blank" >10.3390/s22051795</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems
Popis výsledku v původním jazyce
With the advancement of science and technology, new complex optimization problems have emerged, and the achievement of optimal solutions has become increasingly important. Many of these problems have features and difficulties such as non-convex, nonlinear, discrete search space, and a non-differentiable objective function. Achieving the optimal solution to such problems has become a major challenge. To address this challenge and provide a solution to deal with the complexities and difficulties of optimization applications, a new stochastic-based optimization algorithm is proposed in this study. Optimization algorithms are a type of stochastic approach for addressing optimization issues that use random scanning of the search space to produce quasi-optimal answers. The Selecting Some Variables to Update-Based Algorithm (SSVUBA) is a new optimization algorithm developed in this study to handle optimization issues in various fields. The suggested algorithm's key principles are to make better use of the information provided by different members of the population and to adjust the number of variables used to update the algorithm population during the iterations of the algorithm. The theory of the proposed SSVUBA is described, and then its mathematical model is offered for use in solving optimization issues. Fifty-three objective functions, including unimodal, multimodal, and CEC 2017 test functions, are utilized to assess the ability and usefulness of the proposed SSVUBA in addressing optimization issues. SSVUBA's performance in optimizing real-world applications is evaluated on four engineering design issues. Furthermore, the performance of SSVUBA in optimization was compared to the performance of eight well-known algorithms to further evaluate its quality. The simulation results reveal that the proposed SSVUBA has a significant ability to handle various optimization issues and that it outperforms other competitor algorithms by giving appropriate quasi-optimal solutions that are closer to the global optima.
Název v anglickém jazyce
Selecting Some Variables to Update-Based Algorithm for Solving Optimization Problems
Popis výsledku anglicky
With the advancement of science and technology, new complex optimization problems have emerged, and the achievement of optimal solutions has become increasingly important. Many of these problems have features and difficulties such as non-convex, nonlinear, discrete search space, and a non-differentiable objective function. Achieving the optimal solution to such problems has become a major challenge. To address this challenge and provide a solution to deal with the complexities and difficulties of optimization applications, a new stochastic-based optimization algorithm is proposed in this study. Optimization algorithms are a type of stochastic approach for addressing optimization issues that use random scanning of the search space to produce quasi-optimal answers. The Selecting Some Variables to Update-Based Algorithm (SSVUBA) is a new optimization algorithm developed in this study to handle optimization issues in various fields. The suggested algorithm's key principles are to make better use of the information provided by different members of the population and to adjust the number of variables used to update the algorithm population during the iterations of the algorithm. The theory of the proposed SSVUBA is described, and then its mathematical model is offered for use in solving optimization issues. Fifty-three objective functions, including unimodal, multimodal, and CEC 2017 test functions, are utilized to assess the ability and usefulness of the proposed SSVUBA in addressing optimization issues. SSVUBA's performance in optimizing real-world applications is evaluated on four engineering design issues. Furthermore, the performance of SSVUBA in optimization was compared to the performance of eight well-known algorithms to further evaluate its quality. The simulation results reveal that the proposed SSVUBA has a significant ability to handle various optimization issues and that it outperforms other competitor algorithms by giving appropriate quasi-optimal solutions that are closer to the global optima.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
1424-8220
Svazek periodika
22
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
43
Strana od-do
"Article Number: 1795"
Kód UT WoS článku
000771328100001
EID výsledku v databázi Scopus
2-s2.0-85125076174