SSABA: Search Step Adjustment Based Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50020026" target="_blank" >RIV/62690094:18470/22:50020026 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/cmc/v71n3/46515" target="_blank" >https://www.techscience.com/cmc/v71n3/46515</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmc.2022.023682" target="_blank" >10.32604/cmc.2022.023682</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SSABA: Search Step Adjustment Based Algorithm
Popis výsledku v původním jazyce
Finding the suitable solution to optimization problems is a fundamental challenge in various sciences. Optimization algorithms are one of the effective stochastic methods in solving optimization problems. In this paper, a new stochastic optimization algorithm called Search StepAdjustment Based Algorithm (SSABA) is presented to provide quasi-optimal solutions to various optimization problems. In the initial iterations of the algorithm, the step index is set to the highest value for a comprehensive search of the search space. Then, with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer to the global optimal, the step index is reduced to reach the minimum value at the end of the algorithm implementation. SSABA is mathematically modeled and its performance in optimization is evaluated on twenty-three different standard objective functions of unimodal and multimodal types. The results of optimization of unimodal functions show that the proposed algorithm SSABA has high exploitation power and the results of optimization of multimodal functions show the appropriate exploration power of the proposed algorithm. In addition, the performance of the proposed SSABA is compared with the performance of eight well-known algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Teaching-Learning Based Optimization (TLBO), Gravitational Search Algorithm (GSA), Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), and Tunicate Swarm Algorithm (TSA). The simulation results show that the proposed SSABA is better and more competitive than the eight compared algorithms with better performance.
Název v anglickém jazyce
SSABA: Search Step Adjustment Based Algorithm
Popis výsledku anglicky
Finding the suitable solution to optimization problems is a fundamental challenge in various sciences. Optimization algorithms are one of the effective stochastic methods in solving optimization problems. In this paper, a new stochastic optimization algorithm called Search StepAdjustment Based Algorithm (SSABA) is presented to provide quasi-optimal solutions to various optimization problems. In the initial iterations of the algorithm, the step index is set to the highest value for a comprehensive search of the search space. Then, with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer to the global optimal, the step index is reduced to reach the minimum value at the end of the algorithm implementation. SSABA is mathematically modeled and its performance in optimization is evaluated on twenty-three different standard objective functions of unimodal and multimodal types. The results of optimization of unimodal functions show that the proposed algorithm SSABA has high exploitation power and the results of optimization of multimodal functions show the appropriate exploration power of the proposed algorithm. In addition, the performance of the proposed SSABA is compared with the performance of eight well-known algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Teaching-Learning Based Optimization (TLBO), Gravitational Search Algorithm (GSA), Grey Wolf Optimization (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), and Tunicate Swarm Algorithm (TSA). The simulation results show that the proposed SSABA is better and more competitive than the eight compared algorithms with better performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMC-Computers, Materials & Continua
ISSN
1546-2218
e-ISSN
1546-2226
Svazek periodika
71
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
4237-4256
Kód UT WoS článku
000770817300004
EID výsledku v databázi Scopus
2-s2.0-85122769931