Many-Objective Grasshopper Optimization Algorithm (MaOGOA): A New Many-Objective Optimization Technique for Solving Engineering Design Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255296" target="_blank" >RIV/61989100:27230/24:10255296 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001290718200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001290718200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s44196-024-00627-0" target="_blank" >10.1007/s44196-024-00627-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Many-Objective Grasshopper Optimization Algorithm (MaOGOA): A New Many-Objective Optimization Technique for Solving Engineering Design Problems
Popis výsledku v původním jazyce
In metaheuristic multi-objective optimization, the term effectiveness is used to describe the performance of a metaheuristic algorithm in achieving two main goals-converging its solutions towards the Pareto front and ensuring these solutions are well-spread across the front. Achieving these objectives is particularly challenging in optimization problems with more than three objectives, known as many-objective optimization problems. Multi-objective algorithms often fall short in exerting adequate selection pressure towards the Pareto front in these scenarios and difficult to keep solutions evenly distributed, especially in cases with irregular Pareto fronts. In this study, the focus is on overcoming these challenges by developing an innovative and efficient a novel Many-Objective Grasshopper Optimisation Algorithm (MaOGOA). MaOGOA incorporates reference point, niche preserve and information feedback mechanism (IFM) for superior convergence and diversity. A comprehensive array of quality metrics is utilized to characterize the preferred attributes of Pareto Front approximations, focusing on convergence, uniformity and expansiveness diversity in terms of IGD, HV and RT metrics. It acknowledged that MaOGOA algorithm is efficient for many-objective optimization challenges. These findings confirm the approach effectiveness and competitive performance. The MaOGOA efficiency is thoroughly examined on WFG1-WFG9 benchmark problem with 5, 7 and 9 objectives and five real-world (RWMaOP1- RWMaOP5) problem, contrasting it with MaOSCA, MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA and GrEA algorithms. The findings demonstrate MaOGOA superior performance against these algorithms.
Název v anglickém jazyce
Many-Objective Grasshopper Optimization Algorithm (MaOGOA): A New Many-Objective Optimization Technique for Solving Engineering Design Problems
Popis výsledku anglicky
In metaheuristic multi-objective optimization, the term effectiveness is used to describe the performance of a metaheuristic algorithm in achieving two main goals-converging its solutions towards the Pareto front and ensuring these solutions are well-spread across the front. Achieving these objectives is particularly challenging in optimization problems with more than three objectives, known as many-objective optimization problems. Multi-objective algorithms often fall short in exerting adequate selection pressure towards the Pareto front in these scenarios and difficult to keep solutions evenly distributed, especially in cases with irregular Pareto fronts. In this study, the focus is on overcoming these challenges by developing an innovative and efficient a novel Many-Objective Grasshopper Optimisation Algorithm (MaOGOA). MaOGOA incorporates reference point, niche preserve and information feedback mechanism (IFM) for superior convergence and diversity. A comprehensive array of quality metrics is utilized to characterize the preferred attributes of Pareto Front approximations, focusing on convergence, uniformity and expansiveness diversity in terms of IGD, HV and RT metrics. It acknowledged that MaOGOA algorithm is efficient for many-objective optimization challenges. These findings confirm the approach effectiveness and competitive performance. The MaOGOA efficiency is thoroughly examined on WFG1-WFG9 benchmark problem with 5, 7 and 9 objectives and five real-world (RWMaOP1- RWMaOP5) problem, contrasting it with MaOSCA, MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA and GrEA algorithms. The findings demonstrate MaOGOA superior performance against these algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computational Intelligence Systems
ISSN
1875-6891
e-ISSN
1875-6883
Svazek periodika
17
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
34
Strana od-do
—
Kód UT WoS článku
001290718200001
EID výsledku v databázi Scopus
2-s2.0-85201285970