Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Many-Objective Grasshopper Optimization Algorithm (MaOGOA): A New Many-Objective Optimization Technique for Solving Engineering Design Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255296" target="_blank" >RIV/61989100:27230/24:10255296 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001290718200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001290718200001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s44196-024-00627-0" target="_blank" >10.1007/s44196-024-00627-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Many-Objective Grasshopper Optimization Algorithm (MaOGOA): A New Many-Objective Optimization Technique for Solving Engineering Design Problems

  • Popis výsledku v původním jazyce

    In metaheuristic multi-objective optimization, the term effectiveness is used to describe the performance of a metaheuristic algorithm in achieving two main goals-converging its solutions towards the Pareto front and ensuring these solutions are well-spread across the front. Achieving these objectives is particularly challenging in optimization problems with more than three objectives, known as many-objective optimization problems. Multi-objective algorithms often fall short in exerting adequate selection pressure towards the Pareto front in these scenarios and difficult to keep solutions evenly distributed, especially in cases with irregular Pareto fronts. In this study, the focus is on overcoming these challenges by developing an innovative and efficient a novel Many-Objective Grasshopper Optimisation Algorithm (MaOGOA). MaOGOA incorporates reference point, niche preserve and information feedback mechanism (IFM) for superior convergence and diversity. A comprehensive array of quality metrics is utilized to characterize the preferred attributes of Pareto Front approximations, focusing on convergence, uniformity and expansiveness diversity in terms of IGD, HV and RT metrics. It acknowledged that MaOGOA algorithm is efficient for many-objective optimization challenges. These findings confirm the approach effectiveness and competitive performance. The MaOGOA efficiency is thoroughly examined on WFG1-WFG9 benchmark problem with 5, 7 and 9 objectives and five real-world (RWMaOP1- RWMaOP5) problem, contrasting it with MaOSCA, MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA and GrEA algorithms. The findings demonstrate MaOGOA superior performance against these algorithms.

  • Název v anglickém jazyce

    Many-Objective Grasshopper Optimization Algorithm (MaOGOA): A New Many-Objective Optimization Technique for Solving Engineering Design Problems

  • Popis výsledku anglicky

    In metaheuristic multi-objective optimization, the term effectiveness is used to describe the performance of a metaheuristic algorithm in achieving two main goals-converging its solutions towards the Pareto front and ensuring these solutions are well-spread across the front. Achieving these objectives is particularly challenging in optimization problems with more than three objectives, known as many-objective optimization problems. Multi-objective algorithms often fall short in exerting adequate selection pressure towards the Pareto front in these scenarios and difficult to keep solutions evenly distributed, especially in cases with irregular Pareto fronts. In this study, the focus is on overcoming these challenges by developing an innovative and efficient a novel Many-Objective Grasshopper Optimisation Algorithm (MaOGOA). MaOGOA incorporates reference point, niche preserve and information feedback mechanism (IFM) for superior convergence and diversity. A comprehensive array of quality metrics is utilized to characterize the preferred attributes of Pareto Front approximations, focusing on convergence, uniformity and expansiveness diversity in terms of IGD, HV and RT metrics. It acknowledged that MaOGOA algorithm is efficient for many-objective optimization challenges. These findings confirm the approach effectiveness and competitive performance. The MaOGOA efficiency is thoroughly examined on WFG1-WFG9 benchmark problem with 5, 7 and 9 objectives and five real-world (RWMaOP1- RWMaOP5) problem, contrasting it with MaOSCA, MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA and GrEA algorithms. The findings demonstrate MaOGOA superior performance against these algorithms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Computational Intelligence Systems

  • ISSN

    1875-6891

  • e-ISSN

    1875-6883

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    34

  • Strana od-do

  • Kód UT WoS článku

    001290718200001

  • EID výsledku v databázi Scopus

    2-s2.0-85201285970