Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Many-objective ant lion optimizer (MaOALO): A new many-objective optimizer with its engineering applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255842" target="_blank" >RIV/61989100:27230/24:10255842 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001286082900001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001286082900001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2024.e32911" target="_blank" >10.1016/j.heliyon.2024.e32911</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Many-objective ant lion optimizer (MaOALO): A new many-objective optimizer with its engineering applications

  • Popis výsledku v původním jazyce

    Many-objective optimization (MaO) is an important aspect of engineering scenarios. In many-objective optimization algorithms (MaOAs), a key challenge is to strike a balance between diversity and convergence. MaOAs employs various tactics to either enhance selection pressure for better convergence and/or implements additional measures for sustaining diversity. With increase in number of objectives, the process becomes more complex, mainly due to challenges in achieving convergence during population selection. This paper introduces a novel Many-Objective Ant Lion Optimizer (MaOALO), featuring the widely-popular ant lion optimizer algorithm. This method utilizes reference point, niche preserve and information feedback mechanism (IFM), to enhance the convergence and diversity of the population. Extensive experimental tests on five real-world (RWMaOP1- RWMaOP5) optimization problems and standard problem classes, including MaF1-MaF15 (for 5, 9 and 15 objectives), DTLZ1-DTLZ7 (for 8 objectives) has been carried out. It is shown that MaOALO is superior compared to ARMOEA, NSGA-III, MaOTLBO, RVEA, MaOABC-TA, DSAE, RL-RVEA and MaOEA-IH algorithms in terms of GD, IGD, SP, SD, HV and RT metrics. The MaOALO source code is available at: https://github.com/kanak02/MaOALO. (C) 2024 The Authors

  • Název v anglickém jazyce

    Many-objective ant lion optimizer (MaOALO): A new many-objective optimizer with its engineering applications

  • Popis výsledku anglicky

    Many-objective optimization (MaO) is an important aspect of engineering scenarios. In many-objective optimization algorithms (MaOAs), a key challenge is to strike a balance between diversity and convergence. MaOAs employs various tactics to either enhance selection pressure for better convergence and/or implements additional measures for sustaining diversity. With increase in number of objectives, the process becomes more complex, mainly due to challenges in achieving convergence during population selection. This paper introduces a novel Many-Objective Ant Lion Optimizer (MaOALO), featuring the widely-popular ant lion optimizer algorithm. This method utilizes reference point, niche preserve and information feedback mechanism (IFM), to enhance the convergence and diversity of the population. Extensive experimental tests on five real-world (RWMaOP1- RWMaOP5) optimization problems and standard problem classes, including MaF1-MaF15 (for 5, 9 and 15 objectives), DTLZ1-DTLZ7 (for 8 objectives) has been carried out. It is shown that MaOALO is superior compared to ARMOEA, NSGA-III, MaOTLBO, RVEA, MaOABC-TA, DSAE, RL-RVEA and MaOEA-IH algorithms in terms of GD, IGD, SP, SD, HV and RT metrics. The MaOALO source code is available at: https://github.com/kanak02/MaOALO. (C) 2024 The Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    39

  • Strana od-do

  • Kód UT WoS článku

    001286082900001

  • EID výsledku v databázi Scopus

    2-s2.0-85196397676