Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Many-Objective Whale Optimization Algorithm for Engineering Design and Large-Scale Many-Objective Optimization Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255100" target="_blank" >RIV/61989100:27230/24:10255100 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001260757800004" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001260757800004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s44196-024-00562-0" target="_blank" >10.1007/s44196-024-00562-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Many-Objective Whale Optimization Algorithm for Engineering Design and Large-Scale Many-Objective Optimization Problems

  • Popis výsledku v původním jazyce

    In this paper, a novel Many-Objective Whale Optimization Algorithm (MaOWOA) is proposed to overcome the challenges of large-scale many-objective optimization problems (LSMOPs) encountered in diverse fields such as engineering. Existing algorithms suffer from curse of dimensionality i.e., they are unable to balance convergence with diversity in extensive decision-making scenarios. MaOWOA introduces strategies to accelerate convergence, balance convergence and diversity in solutions and enhance diversity in high-dimensional spaces. The prime contributions of this paper are-development of MaOWOA, incorporation an Information Feedback Mechanism (IFM) for rapid convergence, a Reference Point-based Selection (RPS) to balance convergence and diversity and a Niche Preservation Strategy (NPS) to improve diversity and prevent overcrowding. A comprehensive evaluation demonstrates MaOWOA superior performance over existing algorithms (MaOPSO, MOEA/DD, MaOABC, NSGA-III) across LSMOP1-LSMOP9 benchmarks and RWMaOP1-RWMaOP5 problems. Results validated using Wilcoxon rank sum tests, highlight MaOWOA excellence in key metrics such as generational distance, spread, spacing, runtime, inverse generational distance and hypervolume, outperforming in 71.8% of tested scenarios. Thus, MaOWOA represents a significant advancement in many-objective optimization, offering new avenues for addressing LSMOPs and RWMaOPs&apos; inherent challenges. This paper details MaOWOA development, theoretical basis and effectiveness, marking a promising direction for future research in optimization strategies amidst growing problem complexity.

  • Název v anglickém jazyce

    Many-Objective Whale Optimization Algorithm for Engineering Design and Large-Scale Many-Objective Optimization Problems

  • Popis výsledku anglicky

    In this paper, a novel Many-Objective Whale Optimization Algorithm (MaOWOA) is proposed to overcome the challenges of large-scale many-objective optimization problems (LSMOPs) encountered in diverse fields such as engineering. Existing algorithms suffer from curse of dimensionality i.e., they are unable to balance convergence with diversity in extensive decision-making scenarios. MaOWOA introduces strategies to accelerate convergence, balance convergence and diversity in solutions and enhance diversity in high-dimensional spaces. The prime contributions of this paper are-development of MaOWOA, incorporation an Information Feedback Mechanism (IFM) for rapid convergence, a Reference Point-based Selection (RPS) to balance convergence and diversity and a Niche Preservation Strategy (NPS) to improve diversity and prevent overcrowding. A comprehensive evaluation demonstrates MaOWOA superior performance over existing algorithms (MaOPSO, MOEA/DD, MaOABC, NSGA-III) across LSMOP1-LSMOP9 benchmarks and RWMaOP1-RWMaOP5 problems. Results validated using Wilcoxon rank sum tests, highlight MaOWOA excellence in key metrics such as generational distance, spread, spacing, runtime, inverse generational distance and hypervolume, outperforming in 71.8% of tested scenarios. Thus, MaOWOA represents a significant advancement in many-objective optimization, offering new avenues for addressing LSMOPs and RWMaOPs&apos; inherent challenges. This paper details MaOWOA development, theoretical basis and effectiveness, marking a promising direction for future research in optimization strategies amidst growing problem complexity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Computational Intelligence Systems

  • ISSN

    1875-6891

  • e-ISSN

    1875-6883

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    33

  • Strana od-do

  • Kód UT WoS článku

    001260757800004

  • EID výsledku v databázi Scopus

    2-s2.0-85197260781