Many-objective artificial hummingbird algorithm: An effective many-objective algorithm for engineering design problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255148" target="_blank" >RIV/61989100:27230/24:10255148 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001268637700001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001268637700001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jcde/qwae055" target="_blank" >10.1093/jcde/qwae055</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Many-objective artificial hummingbird algorithm: An effective many-objective algorithm for engineering design problems
Popis výsledku v původním jazyce
Many-objective optimization presents unique challenges in balancing diversity and convergence of solutions. Traditional approaches struggle with this balance, leading to suboptimal solution distributions in the objective space especially at higher number of objectives. This necessitates the need for innovative strategies to adeptly manage these complexities. This study introduces a Many-Objective Artificial Hummingbird Algorithm (MaOAHA), an advanced evolutionary algorithm designed to overcome the limitations of existing many-objective optimization methods. The objectives are to improve convergence rates, maintain solution diversity, and achieve a uniform distribution in the objective space. MaOAHA implements information feedback mechanism (IFM), reference point-based selection and association, non-dominated sorting, and niche preservation. The IFM utilizes historical data from previous generations to inform the update process, thereby improving the algorithm's the exploration and exploitation capabilities. Reference point-based selection, along with non-dominated sorting, ensures solutions are both close to the Pareto front and evenly spread in the objective space. Niche preservation and density estimation strategies are employed to maintain diversity and prevent overcrowding. The comprehensive experimental analysis benchmarks MaOAHA against four leading algorithms viz. Many-Objective Gradient-Based Optimizer, Many-Objective Particle Swarm Optimizer, Reference Vector Guided Evolutionary Algorithm, and Nondominated Sorting Genetic Algorithm III. The DTLZ1-DTLZ7 benchmark sets with four, six, and eight objectives and five real-world problems (RWMaOP1-RWMaOP5) are considered for performance assessment of the selected algorithms. The results demonstrate that internal parameter-free MaOAHA significantly outperforms its counterparts, achieving better generational distance by up to 52.38%, inverse generational distance by up to 38.09%, spacing by up to 56%, spread by up to 71.42%, hypervolume by up to 44%, and runtime by up to 52%. These metrics affirm the MaOAHA's capability to enhance the decision-making processes through its adept balance of convergence, diversity, and uniformity.
Název v anglickém jazyce
Many-objective artificial hummingbird algorithm: An effective many-objective algorithm for engineering design problems
Popis výsledku anglicky
Many-objective optimization presents unique challenges in balancing diversity and convergence of solutions. Traditional approaches struggle with this balance, leading to suboptimal solution distributions in the objective space especially at higher number of objectives. This necessitates the need for innovative strategies to adeptly manage these complexities. This study introduces a Many-Objective Artificial Hummingbird Algorithm (MaOAHA), an advanced evolutionary algorithm designed to overcome the limitations of existing many-objective optimization methods. The objectives are to improve convergence rates, maintain solution diversity, and achieve a uniform distribution in the objective space. MaOAHA implements information feedback mechanism (IFM), reference point-based selection and association, non-dominated sorting, and niche preservation. The IFM utilizes historical data from previous generations to inform the update process, thereby improving the algorithm's the exploration and exploitation capabilities. Reference point-based selection, along with non-dominated sorting, ensures solutions are both close to the Pareto front and evenly spread in the objective space. Niche preservation and density estimation strategies are employed to maintain diversity and prevent overcrowding. The comprehensive experimental analysis benchmarks MaOAHA against four leading algorithms viz. Many-Objective Gradient-Based Optimizer, Many-Objective Particle Swarm Optimizer, Reference Vector Guided Evolutionary Algorithm, and Nondominated Sorting Genetic Algorithm III. The DTLZ1-DTLZ7 benchmark sets with four, six, and eight objectives and five real-world problems (RWMaOP1-RWMaOP5) are considered for performance assessment of the selected algorithms. The results demonstrate that internal parameter-free MaOAHA significantly outperforms its counterparts, achieving better generational distance by up to 52.38%, inverse generational distance by up to 38.09%, spacing by up to 56%, spread by up to 71.42%, hypervolume by up to 44%, and runtime by up to 52%. These metrics affirm the MaOAHA's capability to enhance the decision-making processes through its adept balance of convergence, diversity, and uniformity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Design and Engineering
ISSN
2288-5048
e-ISSN
2288-5048
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
16-39
Kód UT WoS článku
001268637700001
EID výsledku v databázi Scopus
2-s2.0-85198749434