USING CMA-ES FOR TUNING COUPLED PID CONTROLLERS WITHIN MODELS OF COMBUSTION ENGINES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00374186" target="_blank" >RIV/68407700:21340/19:00374186 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.14311/NNW.2019.29.020" target="_blank" >https://doi.org/10.14311/NNW.2019.29.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2019.29.020" target="_blank" >10.14311/NNW.2019.29.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
USING CMA-ES FOR TUNING COUPLED PID CONTROLLERS WITHIN MODELS OF COMBUSTION ENGINES
Popis výsledku v původním jazyce
Proportional integral derivative (PID) controllers are important and widely used tools of system control. Tuning their gains is a laborious task, especially for complex systems such as combustion engines. To minimize the time an engineer spends tuning the gains in a simulation software, we propose to formulate a part of the problem as a black-box optimization task. In this paper, we summarize the properties and practical limitations of gain tuning in this particular application. We investigate the latest methods of black-box optimization and conclude that the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with bi-population restart strategy, elitist parent selection and active covariance matrix adaptation is best suited for this task. Details of the algorithm's experiment-based calibration are explained as well as derivation of a suitable objective function. The method's performance is compared with that of PSO and SHADE. Finally, its usability is verified on six models of real engines.
Název v anglickém jazyce
USING CMA-ES FOR TUNING COUPLED PID CONTROLLERS WITHIN MODELS OF COMBUSTION ENGINES
Popis výsledku anglicky
Proportional integral derivative (PID) controllers are important and widely used tools of system control. Tuning their gains is a laborious task, especially for complex systems such as combustion engines. To minimize the time an engineer spends tuning the gains in a simulation software, we propose to formulate a part of the problem as a black-box optimization task. In this paper, we summarize the properties and practical limitations of gain tuning in this particular application. We investigate the latest methods of black-box optimization and conclude that the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with bi-population restart strategy, elitist parent selection and active covariance matrix adaptation is best suited for this task. Details of the algorithm's experiment-based calibration are explained as well as derivation of a suitable objective function. The method's performance is compared with that of PSO and SHADE. Finally, its usability is verified on six models of real engines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
20
Strana od-do
325-344
Kód UT WoS článku
000497700600003
EID výsledku v databázi Scopus
2-s2.0-85077063705