Combining Gaussian Processes with Neural Networks for Active Learning in Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00555604" target="_blank" >RIV/67985807:_____/21:00555604 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-3079/ial2021_paper9.pdf" target="_blank" >http://ceur-ws.org/Vol-3079/ial2021_paper9.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining Gaussian Processes with Neural Networks for Active Learning in Optimization
Popis výsledku v původním jazyce
One area where active learning plays an important role is black-box optimization of objective functions with expensive evaluations. To deal with such evaluations, continuous black-box optimization has adopted an approach called surrogate modelling or metamodelling, which consists in replacing the true black-box objective in some of its evaluations with a suitable regression model, the selection of evaluations for replacement being an active learning task. This paper concerns surrogate modelling in the context of a surrogate-assisted variant of the continuous black-box optimizer Covariance Matrix Adaptation Evolution Strategy. It reports the experimental investigation of surrogate models combining artificial neural networks with Gaussian processes, for which it considers six different covariance functions. The experiments were performed on the set of 24 noiseless benchmark functions of the platform Comparing Continuous Optimizers COCO with 5 different dimensionalities. Their results revealed that the most suitable covariance function for this combined kind of surrogate models is the rational quadratic followed by the Matérn 25 and squared exponential. Moreover, the rational quadratic and squared exponential covariances were found interchangeable in the sense that for no function, no group of functions, no dimension and combination of them, the performance of the respective surrogate models was significantly different.
Název v anglickém jazyce
Combining Gaussian Processes with Neural Networks for Active Learning in Optimization
Popis výsledku anglicky
One area where active learning plays an important role is black-box optimization of objective functions with expensive evaluations. To deal with such evaluations, continuous black-box optimization has adopted an approach called surrogate modelling or metamodelling, which consists in replacing the true black-box objective in some of its evaluations with a suitable regression model, the selection of evaluations for replacement being an active learning task. This paper concerns surrogate modelling in the context of a surrogate-assisted variant of the continuous black-box optimizer Covariance Matrix Adaptation Evolution Strategy. It reports the experimental investigation of surrogate models combining artificial neural networks with Gaussian processes, for which it considers six different covariance functions. The experiments were performed on the set of 24 noiseless benchmark functions of the platform Comparing Continuous Optimizers COCO with 5 different dimensionalities. Their results revealed that the most suitable covariance function for this combined kind of surrogate models is the rational quadratic followed by the Matérn 25 and squared exponential. Moreover, the rational quadratic and squared exponential covariances were found interchangeable in the sense that for no function, no group of functions, no dimension and combination of them, the performance of the respective surrogate models was significantly different.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IAL@ECML PKDD 2021: Workshop on Interactive Adaptive Learning. Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
16
Strana od-do
105-120
Název nakladatele
Technical University & CreateSpace Independent Publishing
Místo vydání
Aachen
Místo konání akce
Bilbao / virtual
Datum konání akce
13. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—