Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combining Gaussian Processes with Neural Networks for Active Learning in Optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00555604" target="_blank" >RIV/67985807:_____/21:00555604 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-3079/ial2021_paper9.pdf" target="_blank" >http://ceur-ws.org/Vol-3079/ial2021_paper9.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combining Gaussian Processes with Neural Networks for Active Learning in Optimization

  • Popis výsledku v původním jazyce

    One area where active learning plays an important role is black-box optimization of objective functions with expensive evaluations. To deal with such evaluations, continuous black-box optimization has adopted an approach called surrogate modelling or metamodelling, which consists in replacing the true black-box objective in some of its evaluations with a suitable regression model, the selection of evaluations for replacement being an active learning task. This paper concerns surrogate modelling in the context of a surrogate-assisted variant of the continuous black-box optimizer Covariance Matrix Adaptation Evolution Strategy. It reports the experimental investigation of surrogate models combining artificial neural networks with Gaussian processes, for which it considers six different covariance functions. The experiments were performed on the set of 24 noiseless benchmark functions of the platform Comparing Continuous Optimizers COCO with 5 different dimensionalities. Their results revealed that the most suitable covariance function for this combined kind of surrogate models is the rational quadratic followed by the Matérn 25 and squared exponential. Moreover, the rational quadratic and squared exponential covariances were found interchangeable in the sense that for no function, no group of functions, no dimension and combination of them, the performance of the respective surrogate models was significantly different.

  • Název v anglickém jazyce

    Combining Gaussian Processes with Neural Networks for Active Learning in Optimization

  • Popis výsledku anglicky

    One area where active learning plays an important role is black-box optimization of objective functions with expensive evaluations. To deal with such evaluations, continuous black-box optimization has adopted an approach called surrogate modelling or metamodelling, which consists in replacing the true black-box objective in some of its evaluations with a suitable regression model, the selection of evaluations for replacement being an active learning task. This paper concerns surrogate modelling in the context of a surrogate-assisted variant of the continuous black-box optimizer Covariance Matrix Adaptation Evolution Strategy. It reports the experimental investigation of surrogate models combining artificial neural networks with Gaussian processes, for which it considers six different covariance functions. The experiments were performed on the set of 24 noiseless benchmark functions of the platform Comparing Continuous Optimizers COCO with 5 different dimensionalities. Their results revealed that the most suitable covariance function for this combined kind of surrogate models is the rational quadratic followed by the Matérn 25 and squared exponential. Moreover, the rational quadratic and squared exponential covariances were found interchangeable in the sense that for no function, no group of functions, no dimension and combination of them, the performance of the respective surrogate models was significantly different.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IAL@ECML PKDD 2021: Workshop on Interactive Adaptive Learning. Proceedings

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    16

  • Strana od-do

    105-120

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing

  • Místo vydání

    Aachen

  • Místo konání akce

    Bilbao / virtual

  • Datum konání akce

    13. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku