Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated Selection of Covariance Function for Gaussian Process Surrogate Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494113" target="_blank" >RIV/67985807:_____/18:00494113 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-2203/64.pdf" target="_blank" >http://ceur-ws.org/Vol-2203/64.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated Selection of Covariance Function for Gaussian Process Surrogate Models

  • Popis výsledku v původním jazyce

    Gaussian processes have a long tradition in model-based algorithms for black-box optimization, where a limited number of objective function evaluations are available. A principal choice in specifying a Gaussian process model is the choice of the covariance function, which largely embodies the prior assumptions about the modeled function. Several methods for learning the form of covariance function have been proposed. We report a work in progress in which the covariance function is selected from a fixed set. The goal of covariance function selection is to capture non-local properties of the objective function and derive a more accurate surrogate model. The model-selection algorithm is evaluated in connection with Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy on the Comparing Continuous Optimizers framework. Several estimates of predictive performance, including cross-validation and information criteria, are discussed. Focus is placed on information criteria suitable for nonparametric methods, and two of them are compared experimentally.

  • Název v anglickém jazyce

    Automated Selection of Covariance Function for Gaussian Process Surrogate Models

  • Popis výsledku anglicky

    Gaussian processes have a long tradition in model-based algorithms for black-box optimization, where a limited number of objective function evaluations are available. A principal choice in specifying a Gaussian process model is the choice of the covariance function, which largely embodies the prior assumptions about the modeled function. Several methods for learning the form of covariance function have been proposed. We report a work in progress in which the covariance function is selected from a fixed set. The goal of covariance function selection is to capture non-local properties of the objective function and derive a more accurate surrogate model. The model-selection algorithm is evaluated in connection with Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy on the Comparing Continuous Optimizers framework. Several estimates of predictive performance, including cross-validation and information criteria, are discussed. Focus is placed on information criteria suitable for nonparametric methods, and two of them are compared experimentally.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ITAT 2018: Information Technologies – Applications and Theory. Proceedings of the 18th conference ITAT 2018

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    64-71

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing Platform

  • Místo vydání

    Aachen

  • Místo konání akce

    Plejsy

  • Datum konání akce

    21. 9. 2018

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku