Automated Selection of Covariance Function for Gaussian Process Surrogate Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494113" target="_blank" >RIV/67985807:_____/18:00494113 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2203/64.pdf" target="_blank" >http://ceur-ws.org/Vol-2203/64.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Selection of Covariance Function for Gaussian Process Surrogate Models
Popis výsledku v původním jazyce
Gaussian processes have a long tradition in model-based algorithms for black-box optimization, where a limited number of objective function evaluations are available. A principal choice in specifying a Gaussian process model is the choice of the covariance function, which largely embodies the prior assumptions about the modeled function. Several methods for learning the form of covariance function have been proposed. We report a work in progress in which the covariance function is selected from a fixed set. The goal of covariance function selection is to capture non-local properties of the objective function and derive a more accurate surrogate model. The model-selection algorithm is evaluated in connection with Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy on the Comparing Continuous Optimizers framework. Several estimates of predictive performance, including cross-validation and information criteria, are discussed. Focus is placed on information criteria suitable for nonparametric methods, and two of them are compared experimentally.
Název v anglickém jazyce
Automated Selection of Covariance Function for Gaussian Process Surrogate Models
Popis výsledku anglicky
Gaussian processes have a long tradition in model-based algorithms for black-box optimization, where a limited number of objective function evaluations are available. A principal choice in specifying a Gaussian process model is the choice of the covariance function, which largely embodies the prior assumptions about the modeled function. Several methods for learning the form of covariance function have been proposed. We report a work in progress in which the covariance function is selected from a fixed set. The goal of covariance function selection is to capture non-local properties of the objective function and derive a more accurate surrogate model. The model-selection algorithm is evaluated in connection with Doubly Trained Surrogate Covariance Matrix Adaptation Evolution Strategy on the Comparing Continuous Optimizers framework. Several estimates of predictive performance, including cross-validation and information criteria, are discussed. Focus is placed on information criteria suitable for nonparametric methods, and two of them are compared experimentally.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2018: Information Technologies – Applications and Theory. Proceedings of the 18th conference ITAT 2018
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
64-71
Název nakladatele
Technical University & CreateSpace Independent Publishing Platform
Místo vydání
Aachen
Místo konání akce
Plejsy
Datum konání akce
21. 9. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—