Towards Landscape Analysis in Adaptive Learning of Surrogate Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00536612" target="_blank" >RIV/67985807:_____/20:00536612 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2660/ialatecml_shortpaper2.pdf" target="_blank" >http://ceur-ws.org/Vol-2660/ialatecml_shortpaper2.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Landscape Analysis in Adaptive Learning of Surrogate Models
Popis výsledku v původním jazyce
A context in which we expect adaptive learning to be promising is the choice of a suitable optimization strategy in black-box optimization. The reason why strategy adaptation is needed in such a situation is that knowledge of the blackbox objective function is obtained only gradually during the optimization. That knowledge covers two aspects: 1. the landscape of the black-box objective, revealed through its evaluation in previous iterations./ 2. success or failure of the optimization strategies applied to that black-box objective in previous iterations. To extract landscape knowledge, landscape analysis has been developed during the last decade. To include also the second aspect, we complement features obtained using the landscape analysis with features describing the optimization employed in previous iterations. Our interest is in expensive black-box optimization, where the number of evaluations of the expensive objective is usually decreased using a suitable surrogate model. Therefore, the research reported in this extended abstract addresses adaptive learning of surrogate models, more precisely their learning in surrogateassisted versions of the state-of-the-art black-box optimization method, Covariance Matrix Adaptation Evolution Strategy (CMA-ES).
Název v anglickém jazyce
Towards Landscape Analysis in Adaptive Learning of Surrogate Models
Popis výsledku anglicky
A context in which we expect adaptive learning to be promising is the choice of a suitable optimization strategy in black-box optimization. The reason why strategy adaptation is needed in such a situation is that knowledge of the blackbox objective function is obtained only gradually during the optimization. That knowledge covers two aspects: 1. the landscape of the black-box objective, revealed through its evaluation in previous iterations./ 2. success or failure of the optimization strategies applied to that black-box objective in previous iterations. To extract landscape knowledge, landscape analysis has been developed during the last decade. To include also the second aspect, we complement features obtained using the landscape analysis with features describing the optimization employed in previous iterations. Our interest is in expensive black-box optimization, where the number of evaluations of the expensive objective is usually decreased using a suitable surrogate model. Therefore, the research reported in this extended abstract addresses adaptive learning of surrogate models, more precisely their learning in surrogateassisted versions of the state-of-the-art black-box optimization method, Covariance Matrix Adaptation Evolution Strategy (CMA-ES).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Workshop on Interactive Adaptive Learning
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
6
Strana od-do
78-83
Název nakladatele
Technical University & CreateSpace Independent Publishing
Místo vydání
Aachen
Místo konání akce
Virtual Ghent
Datum konání akce
14. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—