Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Transfer of Knowledge for Surrogate Model Selection in Cost-Aware Optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00493290" target="_blank" >RIV/67985807:_____/18:00493290 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf" target="_blank" >https://www.ies.uni-kassel.de/p/ial2018/ialatecml2018.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Transfer of Knowledge for Surrogate Model Selection in Cost-Aware Optimization

  • Popis výsledku v původním jazyce

    PUBLISHED IN: ECML PKDD 2018: Workshop on Interactive Adaptive Learning. Proceedings. Dublin, 2018 - (Krempl, G., Lemaire, V., Kottke, D., Calma, A., Holzinger, A., Polikar, R., Sick, B.). s. 89-94. [ECML PKDD 2018: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. 10.09.2018-14.09.2018, Dublin]. Grant CEP: GA ČR GA17-01251S. ABSTRACT: Surrogate model selection is an active-learning approach to cost-aware continuous black-box optimization in domains where the evaluation of the black-box objective function is expensive, e. g., obtained experimentally or resulting from comprehensive simulations. Active reusing of knowledge represented by landscape properties of the objective function accross different tasks can provide additional information for more reliable decisions in terms of a suitable surrogate model and a suitable setting of its hyperparameters. However, research into using metalearning and especially Exploratory Landscape Analysis (ELA) in this context is only starting. Our goal is to develop a learning system capable to recommend a surrogate model on the basis of the knowledge obtained in previous black-box optimization tasks. In this paper, we provide a first step necessary to construct a learning system applying knowledge from previous tasks to a new one: a study of the applicability of ELA to two important kinds of surrogate models – Gaussian processes (GP) and ensembles of regression trees (random forests, RF). Results using the noiseless benchmarks of the Comparing-Continuous-Optimisers (COCO) platform in the expensive scenario, where at most 50D evaluations are available, are analysed for statistical dependences between model performance and a broad variety of landscape features.n

  • Název v anglickém jazyce

    Transfer of Knowledge for Surrogate Model Selection in Cost-Aware Optimization

  • Popis výsledku anglicky

    PUBLISHED IN: ECML PKDD 2018: Workshop on Interactive Adaptive Learning. Proceedings. Dublin, 2018 - (Krempl, G., Lemaire, V., Kottke, D., Calma, A., Holzinger, A., Polikar, R., Sick, B.). s. 89-94. [ECML PKDD 2018: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. 10.09.2018-14.09.2018, Dublin]. Grant CEP: GA ČR GA17-01251S. ABSTRACT: Surrogate model selection is an active-learning approach to cost-aware continuous black-box optimization in domains where the evaluation of the black-box objective function is expensive, e. g., obtained experimentally or resulting from comprehensive simulations. Active reusing of knowledge represented by landscape properties of the objective function accross different tasks can provide additional information for more reliable decisions in terms of a suitable surrogate model and a suitable setting of its hyperparameters. However, research into using metalearning and especially Exploratory Landscape Analysis (ELA) in this context is only starting. Our goal is to develop a learning system capable to recommend a surrogate model on the basis of the knowledge obtained in previous black-box optimization tasks. In this paper, we provide a first step necessary to construct a learning system applying knowledge from previous tasks to a new one: a study of the applicability of ELA to two important kinds of surrogate models – Gaussian processes (GP) and ensembles of regression trees (random forests, RF). Results using the noiseless benchmarks of the Comparing-Continuous-Optimisers (COCO) platform in the expensive scenario, where at most 50D evaluations are available, are analysed for statistical dependences between model performance and a broad variety of landscape features.n

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů