Extended efficient convolutional neural network for concrete crack detection with illustrated merits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150258" target="_blank" >RIV/00216305:26110/23:PU150258 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0926580523003588?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926580523003588?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.autcon.2023.105098" target="_blank" >10.1016/j.autcon.2023.105098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extended efficient convolutional neural network for concrete crack detection with illustrated merits
Popis výsledku v původním jazyce
An efficient convolutional neural network (CNN), called EfficientNetV2, was recently developed. The early blocks of EfficientNetV2 have structural characteristics that lead to higher training speeds than state-of-the-art CNNs. Inspired by EfficientNetV2, extended research was conducted in this study to determine whether the early, middle, and late blocks of CNNs should have respective structural characteristics to achieve higher efficiency. Based on comprehensive studies, three tactics were proposed, which underpinned a swift CNN called StairNet. StairNet was subsequently equipped into faster region-based CNN framework, producing Faster R-Stair. The presented StairNet and Faster R-Stair were validated on two datasets, respectively: Dataset1 comprising a pair of open-source datasets and a dataset of images captured in real-world conditions; Dataset2 derived from Dataset1, consisting of more complicated object modes, with the purpose of mimicking the coexistence of multiple cracks under real conditions. Experimental results showed that StairNet outperforms EfficientNetV2, GoogLeNet, VGG16_BN, ResNet34, and MobileNetV3 in efficiency of crack classification and detection. A Faster R-Stair concrete crack-detection software platform was also developed. The software platform and an unmanned aerial vehicle were used to detect concrete road cracks at a university in Nanjing, China. The developed system has a swift detection process, with high speed and excellent results.
Název v anglickém jazyce
Extended efficient convolutional neural network for concrete crack detection with illustrated merits
Popis výsledku anglicky
An efficient convolutional neural network (CNN), called EfficientNetV2, was recently developed. The early blocks of EfficientNetV2 have structural characteristics that lead to higher training speeds than state-of-the-art CNNs. Inspired by EfficientNetV2, extended research was conducted in this study to determine whether the early, middle, and late blocks of CNNs should have respective structural characteristics to achieve higher efficiency. Based on comprehensive studies, three tactics were proposed, which underpinned a swift CNN called StairNet. StairNet was subsequently equipped into faster region-based CNN framework, producing Faster R-Stair. The presented StairNet and Faster R-Stair were validated on two datasets, respectively: Dataset1 comprising a pair of open-source datasets and a dataset of images captured in real-world conditions; Dataset2 derived from Dataset1, consisting of more complicated object modes, with the purpose of mimicking the coexistence of multiple cracks under real conditions. Experimental results showed that StairNet outperforms EfficientNetV2, GoogLeNet, VGG16_BN, ResNet34, and MobileNetV3 in efficiency of crack classification and detection. A Faster R-Stair concrete crack-detection software platform was also developed. The software platform and an unmanned aerial vehicle were used to detect concrete road cracks at a university in Nanjing, China. The developed system has a swift detection process, with high speed and excellent results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TM04000012" target="_blank" >TM04000012: Systém pro zjišťování stavu betonových mostů založený na na vzájemné podpoře velkých dat a mechaniky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AUTOMATION IN CONSTRUCTION
ISSN
0926-5805
e-ISSN
1872-7891
Svazek periodika
156
Číslo periodika v rámci svazku
105098
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
„“-„“
Kód UT WoS článku
001085394600001
EID výsledku v databázi Scopus
2-s2.0-85172706718