Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Extended efficient convolutional neural network for concrete crack detection with illustrated merits

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150258" target="_blank" >RIV/00216305:26110/23:PU150258 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0926580523003588?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0926580523003588?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.autcon.2023.105098" target="_blank" >10.1016/j.autcon.2023.105098</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Extended efficient convolutional neural network for concrete crack detection with illustrated merits

  • Popis výsledku v původním jazyce

    An efficient convolutional neural network (CNN), called EfficientNetV2, was recently developed. The early blocks of EfficientNetV2 have structural characteristics that lead to higher training speeds than state-of-the-art CNNs. Inspired by EfficientNetV2, extended research was conducted in this study to determine whether the early, middle, and late blocks of CNNs should have respective structural characteristics to achieve higher efficiency. Based on comprehensive studies, three tactics were proposed, which underpinned a swift CNN called StairNet. StairNet was subsequently equipped into faster region-based CNN framework, producing Faster R-Stair. The presented StairNet and Faster R-Stair were validated on two datasets, respectively: Dataset1 comprising a pair of open-source datasets and a dataset of images captured in real-world conditions; Dataset2 derived from Dataset1, consisting of more complicated object modes, with the purpose of mimicking the coexistence of multiple cracks under real conditions. Experimental results showed that StairNet outperforms EfficientNetV2, GoogLeNet, VGG16_BN, ResNet34, and MobileNetV3 in efficiency of crack classification and detection. A Faster R-Stair concrete crack-detection software platform was also developed. The software platform and an unmanned aerial vehicle were used to detect concrete road cracks at a university in Nanjing, China. The developed system has a swift detection process, with high speed and excellent results.

  • Název v anglickém jazyce

    Extended efficient convolutional neural network for concrete crack detection with illustrated merits

  • Popis výsledku anglicky

    An efficient convolutional neural network (CNN), called EfficientNetV2, was recently developed. The early blocks of EfficientNetV2 have structural characteristics that lead to higher training speeds than state-of-the-art CNNs. Inspired by EfficientNetV2, extended research was conducted in this study to determine whether the early, middle, and late blocks of CNNs should have respective structural characteristics to achieve higher efficiency. Based on comprehensive studies, three tactics were proposed, which underpinned a swift CNN called StairNet. StairNet was subsequently equipped into faster region-based CNN framework, producing Faster R-Stair. The presented StairNet and Faster R-Stair were validated on two datasets, respectively: Dataset1 comprising a pair of open-source datasets and a dataset of images captured in real-world conditions; Dataset2 derived from Dataset1, consisting of more complicated object modes, with the purpose of mimicking the coexistence of multiple cracks under real conditions. Experimental results showed that StairNet outperforms EfficientNetV2, GoogLeNet, VGG16_BN, ResNet34, and MobileNetV3 in efficiency of crack classification and detection. A Faster R-Stair concrete crack-detection software platform was also developed. The software platform and an unmanned aerial vehicle were used to detect concrete road cracks at a university in Nanjing, China. The developed system has a swift detection process, with high speed and excellent results.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TM04000012" target="_blank" >TM04000012: Systém pro zjišťování stavu betonových mostů založený na na vzájemné podpoře velkých dat a mechaniky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    AUTOMATION IN CONSTRUCTION

  • ISSN

    0926-5805

  • e-ISSN

    1872-7891

  • Svazek periodika

    156

  • Číslo periodika v rámci svazku

    105098

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    23

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001085394600001

  • EID výsledku v databázi Scopus

    2-s2.0-85172706718