Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F24%3APU150136" target="_blank" >RIV/00216305:26110/24:PU150136 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293679" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293679</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0293679" target="_blank" >10.1371/journal.pone.0293679</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods
Popis výsledku v původním jazyce
Machine learning methods and agent-based models enable the optimization of the operation of high capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was obtained from the waiting room traffic of a vaccination center. Walking speed distribution, the number of stops, the distribution of waiting times, and the locations of waiting points were extracted. Of the 9 machine learning algorithms, the random forest model achieved the highest accuracy in classifying valid data and noise. The proposed microscopic calibration allows for more accurate capacity assessment testing, procedural changes testing, and geometric modifications testing in parts of the facility adjacent to the calibrated parts. The results show that the proposed method achieves state-of-the-art performance on a violent-flows dataset. The proposed method has the potential to significantly improve the accuracy and efficiency of input model predictions and optimize the operation of high-capacity facilities.
Název v anglickém jazyce
Calibration of pedestrian ingress model based on CCTV surveillance data using machine learning methods
Popis výsledku anglicky
Machine learning methods and agent-based models enable the optimization of the operation of high capacity facilities. In this paper, we propose a method for automatically extracting and cleaning pedestrian traffic detector data for subsequent calibration of the ingress pedestrian model. The data was obtained from the waiting room traffic of a vaccination center. Walking speed distribution, the number of stops, the distribution of waiting times, and the locations of waiting points were extracted. Of the 9 machine learning algorithms, the random forest model achieved the highest accuracy in classifying valid data and noise. The proposed microscopic calibration allows for more accurate capacity assessment testing, procedural changes testing, and geometric modifications testing in parts of the facility adjacent to the calibrated parts. The results show that the proposed method achieves state-of-the-art performance on a violent-flows dataset. The proposed method has the potential to significantly improve the accuracy and efficiency of input model predictions and optimize the operation of high-capacity facilities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLOS ONE
ISSN
1932-6203
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
„“-„“
Kód UT WoS článku
001174325200016
EID výsledku v databázi Scopus
2-s2.0-85182600088