On fractional moment estimation from polynomial chaos expansion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F25%3APU152709" target="_blank" >RIV/00216305:26110/25:PU152709 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0951832024006653" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0951832024006653</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ress.2024.110594" target="_blank" >10.1016/j.ress.2024.110594</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On fractional moment estimation from polynomial chaos expansion
Popis výsledku v původním jazyce
Fractional statistical moments are utilized for various tasks of uncertainty quantification, including the estimation of probability distributions. However, an estimation of fractional statistical moments of costly mathematical models by statistical sampling is challenging since it is typically not possible to create a large experimental design due to limitations in computing capacity. This paper presents a novel approach for the analytical estimation of fractional moments, directly from polynomial chaos expansions. Specifically, the first four statistical moments obtained from the deterministic coefficients of polynomial chaos expansion are used for an estimation of arbitrary fractional moments via H & ouml;lder's inequality. The proposed approach is utilized for an estimation of statistical moments and probability distributions in four numerical examples of increasing complexity. Obtained results show that the proposed approach achieves a superior performance in estimating the distribution of the response, in comparison to a standard Latin hypercube sampling in the presented examples.
Název v anglickém jazyce
On fractional moment estimation from polynomial chaos expansion
Popis výsledku anglicky
Fractional statistical moments are utilized for various tasks of uncertainty quantification, including the estimation of probability distributions. However, an estimation of fractional statistical moments of costly mathematical models by statistical sampling is challenging since it is typically not possible to create a large experimental design due to limitations in computing capacity. This paper presents a novel approach for the analytical estimation of fractional moments, directly from polynomial chaos expansions. Specifically, the first four statistical moments obtained from the deterministic coefficients of polynomial chaos expansion are used for an estimation of arbitrary fractional moments via H & ouml;lder's inequality. The proposed approach is utilized for an estimation of statistical moments and probability distributions in four numerical examples of increasing complexity. Obtained results show that the proposed approach achieves a superior performance in estimating the distribution of the response, in comparison to a standard Latin hypercube sampling in the presented examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LUAUS24260" target="_blank" >LUAUS24260: Rozvoj polynomiálního chaosu s fyzikálním omezením pro stochastickou mechaniku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RELIABILITY ENGINEERING & SYSTEM SAFETY
ISSN
0951-8320
e-ISSN
1879-0836
Svazek periodika
254
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
„“-„“
Kód UT WoS článku
001348858900001
EID výsledku v databázi Scopus
2-s2.0-85207966266