Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

IMPROVEMENT OF Q-LEARNING USED FOR CONTROL OF AMB

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F03%3APU37863" target="_blank" >RIV/00216305:26210/03:PU37863 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    IMPROVEMENT OF Q-LEARNING USED FOR CONTROL OF AMB

  • Popis výsledku v původním jazyce

    Active magnetic bearing (AMB) is perspective design element; however AMB itself is unstable and must be stabilized by feedback control loop. Artificial intelligence methods, which use real time machine learning, can be used for the proposition of new control methods, which either improve the AMB control, or require less complex control electronics. The paper is focused on use of reinforcement learning version called Q-learning. As the conventional Q-learning architectures learning process is too slow too be practical for real control tasks, the paper proposes improvement of Q-learning by partitioning the learning process into two phases: prelearning phase and tutorage phase. Prelearning phase requires computational model but is highly efficient, tutorage phase uses conventional real time Q-learning and assumes the interaction with the real system. To demonstrate the qualities of developed controllers the performance of AMB model controlled by such controller is compared with the perfor

  • Název v anglickém jazyce

    IMPROVEMENT OF Q-LEARNING USED FOR CONTROL OF AMB

  • Popis výsledku anglicky

    Active magnetic bearing (AMB) is perspective design element; however AMB itself is unstable and must be stabilized by feedback control loop. Artificial intelligence methods, which use real time machine learning, can be used for the proposition of new control methods, which either improve the AMB control, or require less complex control electronics. The paper is focused on use of reinforcement learning version called Q-learning. As the conventional Q-learning architectures learning process is too slow too be practical for real control tasks, the paper proposes improvement of Q-learning by partitioning the learning process into two phases: prelearning phase and tutorage phase. Prelearning phase requires computational model but is highly efficient, tutorage phase uses conventional real time Q-learning and assumes the interaction with the real system. To demonstrate the qualities of developed controllers the performance of AMB model controlled by such controller is compared with the perfor

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2003

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Electrical Drives and Power Electronics 2003

  • ISBN

    80-89061-77-X

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    51-54

  • Název nakladatele

    Neuveden

  • Místo vydání

    Košice, Slovak Republik

  • Místo konání akce

    Hotel Permon, The High Tatras

  • Datum konání akce

    24. 9. 2003

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku