IMPROVEMENT OF Q-LEARNING USED FOR CONTROL OF AMB
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F03%3APU37863" target="_blank" >RIV/00216305:26210/03:PU37863 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IMPROVEMENT OF Q-LEARNING USED FOR CONTROL OF AMB
Popis výsledku v původním jazyce
Active magnetic bearing (AMB) is perspective design element; however AMB itself is unstable and must be stabilized by feedback control loop. Artificial intelligence methods, which use real time machine learning, can be used for the proposition of new control methods, which either improve the AMB control, or require less complex control electronics. The paper is focused on use of reinforcement learning version called Q-learning. As the conventional Q-learning architectures learning process is too slow too be practical for real control tasks, the paper proposes improvement of Q-learning by partitioning the learning process into two phases: prelearning phase and tutorage phase. Prelearning phase requires computational model but is highly efficient, tutorage phase uses conventional real time Q-learning and assumes the interaction with the real system. To demonstrate the qualities of developed controllers the performance of AMB model controlled by such controller is compared with the perfor
Název v anglickém jazyce
IMPROVEMENT OF Q-LEARNING USED FOR CONTROL OF AMB
Popis výsledku anglicky
Active magnetic bearing (AMB) is perspective design element; however AMB itself is unstable and must be stabilized by feedback control loop. Artificial intelligence methods, which use real time machine learning, can be used for the proposition of new control methods, which either improve the AMB control, or require less complex control electronics. The paper is focused on use of reinforcement learning version called Q-learning. As the conventional Q-learning architectures learning process is too slow too be practical for real control tasks, the paper proposes improvement of Q-learning by partitioning the learning process into two phases: prelearning phase and tutorage phase. Prelearning phase requires computational model but is highly efficient, tutorage phase uses conventional real time Q-learning and assumes the interaction with the real system. To demonstrate the qualities of developed controllers the performance of AMB model controlled by such controller is compared with the perfor
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Electrical Drives and Power Electronics 2003
ISBN
80-89061-77-X
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
51-54
Název nakladatele
Neuveden
Místo vydání
Košice, Slovak Republik
Místo konání akce
Hotel Permon, The High Tatras
Datum konání akce
24. 9. 2003
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—