Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Vyšetřování stability nelineárních řídících systémů metodou linearizace

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F04%3APU46812" target="_blank" >RIV/00216305:26210/04:PU46812 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stability analysis of nonlinear control systems using linearization

  • Popis výsledku v původním jazyce

    The most powerful methods of systems analysis have been developed for linear control systems. For a linear control system, all the relationships between the variables are linear differential equations, usually with constant coefficients. Actual control systems usually contain some nonlinear elements. In the following we show how the equations for nonlinear elements may be linearized. But the result is applicable only in a small enough region. When all the roots of the characteristic equation are loccated in the left half-plane, the system is stable. However that linearization fails when Re si ˇÜ 0 for all i, with Re si = 0 for some i. The table includes the nonlinear equations and their the linear approximation. Then it is easy to find out if the nonlinear system is or is not stable; the task that usually ranks among the difficult task in engineering practice.

  • Název v anglickém jazyce

    Stability analysis of nonlinear control systems using linearization

  • Popis výsledku anglicky

    The most powerful methods of systems analysis have been developed for linear control systems. For a linear control system, all the relationships between the variables are linear differential equations, usually with constant coefficients. Actual control systems usually contain some nonlinear elements. In the following we show how the equations for nonlinear elements may be linearized. But the result is applicable only in a small enough region. When all the roots of the characteristic equation are loccated in the left half-plane, the system is stable. However that linearization fails when Re si ˇÜ 0 for all i, with Re si = 0 for some i. The table includes the nonlinear equations and their the linear approximation. Then it is easy to find out if the nonlinear system is or is not stable; the task that usually ranks among the difficult task in engineering practice.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2004

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 5th International Carpathian Control Conference

  • ISBN

    83-89772-00-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    25-29

  • Název nakladatele

    DELTA

  • Místo vydání

    Zakopane

  • Místo konání akce

    Zakopane

  • Datum konání akce

    25. 5. 2004

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku