Řešení stability nelineárních řídících systémů
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F04%3APU46847" target="_blank" >RIV/00216305:26210/04:PU46847 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability Analysis of Nonlinear Control Systems
Popis výsledku v původním jazyce
The most powerful methods of systems analysis have been developed for linear control systems. For a linear control system, all the relationships between the variables are linear differential equations, usually with constant coefficients. But actual control systems usually contain some nonlinear elements. Three methods for stability analysis of nonlinear control systems will be introduced in this lecture: method of linearization, Lyapunov direct method and Popov criterion. Since stability analysis of nonlinear control systems is difficult task in engineering practice, these methods are made easier and tabulated. In the lecture we will show how the equations for nonlinear elements may be linearized. But the result is applicable only in a small enough region. When all the roots of the characteristic equation are located in the left half-plane, the system is stable. However that linearization fails when Re si ˇÜ 0 for all i, with Re si = 0 for some i. We can construct the table includes th
Název v anglickém jazyce
Stability Analysis of Nonlinear Control Systems
Popis výsledku anglicky
The most powerful methods of systems analysis have been developed for linear control systems. For a linear control system, all the relationships between the variables are linear differential equations, usually with constant coefficients. But actual control systems usually contain some nonlinear elements. Three methods for stability analysis of nonlinear control systems will be introduced in this lecture: method of linearization, Lyapunov direct method and Popov criterion. Since stability analysis of nonlinear control systems is difficult task in engineering practice, these methods are made easier and tabulated. In the lecture we will show how the equations for nonlinear elements may be linearized. But the result is applicable only in a small enough region. When all the roots of the characteristic equation are located in the left half-plane, the system is stable. However that linearization fails when Re si ˇÜ 0 for all i, with Re si = 0 for some i. We can construct the table includes th
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Summer School on Control Theory and Applications
ISBN
—
ISSN
—
e-ISSN
—
Počet stran výsledku
1
Strana od-do
29-29
Název nakladatele
Graz University of Technology
Místo vydání
Graz
Místo konání akce
Graz
Datum konání akce
1. 9. 2004
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—