Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Genetic Algorithms for Scenario Generation in Stochastic Programming: Motivation and General Framework

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F08%3APU77910" target="_blank" >RIV/00216305:26210/08:PU77910 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Genetic Algorithms for Scenario Generation in Stochastic Programming: Motivation and General Framework

  • Popis výsledku v původním jazyce

    Stochastic programs have been developed as useful tools for modeling of various application problems. The developed algorithms usually require a solution of large-scale linear and nonlinear programs because the deterministic reformulations of the original stochastic programs are based on empirical or sampling discrete probability distributions, i.e. on so-called scenario sets. The scenario sets are often large, so the reformulated programs must be solved. Therefore, the suitable scenario set generationtechniques are required. Hence, randomly selected reduced scenario sets are often employed. Related confidence intervals for the optimal objective function values have been derived and are often presented as tight enough. However, there is also demand for goal-oriented scenario generation to learn more about the extreme cases. Traditional deterministic max-min and min-min techniques are significantly limited by the size of scenario set. Therefore, this text introduces a general framework

  • Název v anglickém jazyce

    Genetic Algorithms for Scenario Generation in Stochastic Programming: Motivation and General Framework

  • Popis výsledku anglicky

    Stochastic programs have been developed as useful tools for modeling of various application problems. The developed algorithms usually require a solution of large-scale linear and nonlinear programs because the deterministic reformulations of the original stochastic programs are based on empirical or sampling discrete probability distributions, i.e. on so-called scenario sets. The scenario sets are often large, so the reformulated programs must be solved. Therefore, the suitable scenario set generationtechniques are required. Hence, randomly selected reduced scenario sets are often employed. Related confidence intervals for the optimal objective function values have been derived and are often presented as tight enough. However, there is also demand for goal-oriented scenario generation to learn more about the extreme cases. Traditional deterministic max-min and min-min techniques are significantly limited by the size of scenario set. Therefore, this text introduces a general framework

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Lecture Notes in Electrical Engineering, book series: Advances in Computational Algorithms and Data Analysis, Vol. 14 Ao, S.L., Rieger, B., Chen, S.S. (Eds.).

  • ISBN

    978-1-4020-8918-3

  • Počet stran výsledku

    9

  • Strana od-do

    527-536

  • Počet stran knihy

    588

  • Název nakladatele

    Springer

  • Místo vydání

    Netherlands

  • Kód UT WoS kapitoly